Notation: we will use the notation T_{n} to denote the subset of rotations of D_{n} and we will use r_{n} to denote the rotation by $360^{\circ} / n$, so that $T_{n}=<r_{n}>\subseteq D_{n}$

Problem 32: Prove that $T_{8} \cong \mathbb{Z}_{8},+$
Problem 33: a. Prove that $f: \mathbb{Z}_{12},+\rightarrow \mathbb{Z}_{4},+$ such that $f\left([m]_{12}\right)=[m]_{4}$ is a function and a homomorphism (of groups).
b. Why is f not an isomorphism?

Problem 34: Note that $U_{14}, \times=\{1,3,5,9,11,13\}$ has 6 elements. Compute $\langle 1\rangle,\langle 3\rangle,\langle 5\rangle$ etc.
Either find a subgroup that includes all 6 elements or show that no subgroup generated by only one element includes all 6 elements.

Problem 35: $U_{9}=\{1,2,4,5,7,8\}$. Calculating $\bmod 9$ (with multiplication), one gets:
$5^{1} \equiv 5, \quad 5^{2} \equiv 7, \quad 5^{3} \equiv 8, \quad 5^{4} \equiv 4, \quad 5^{5} \equiv 2, \quad 5^{6} \equiv 1$, so $<5>=U_{9}$
Prove that $f: \mathbb{Z}_{6},+\rightarrow U_{9}, \times$ such that $f\left([n]_{6}\right)=\left[5^{n}\right]_{9}$ is a function and an isomorphism.
Problem 36: Define an isomorphism $g: \mathbb{Z}_{6},+\rightarrow U_{14}, \times$
Problem 37: Find an example that shows that there can be rings $S \subseteq R$ and $T \subseteq R$ that are both subrings of R, but $S \cup T$ is not a subring of R.

