Abstract Algebra Notes

Definition A group is a set of elements G together with a binary operation # that have the properties:

- 1. Closure: If $a, b \in G$ then $a \# b \in G$
- 2. Associativity: If $a, b, c \in G$ then a # (b # c) = (a # b) # c
- 3. Identity under #: There is an element $e \in G$ such that if $a \in G$ then a # e = e # a = a
- 4. Inverses under #: For each $a \in G$ there is an element $a^{-1} \in G$ such that $a \# a^{-1} = a^{-1} \# a = e$.

As a default, we will use multiplication as the group operation, in which case the above properties are written:

- 1. Closure: If $a, b \in G$ then $ab \in G$
- 2. Associativity: If $a, b, c \in G$ then a(bc) = (ab)c
- 3. Identity: There is an element $e \in G$ such that if $a \in G$ then ae = ea = a
- 4. Inverses: For each $a \in G$ there is an element $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$.

Definition If G is a group, and $H \subseteq G$ is a subset of G, such that H is a group, then H is a **subgroup** of G.

Theorem 1: If G is a group, and $H \subseteq G$ is a non-empty subset of G such that

- 1. *H* is closed: if $a, b \in H$ then $ab \in H$
- 2. The inverse of every element in *H* is also in *H*: If $a \in H$ then there is an element $a^{-1} \in H$ such that $aa^{-1} = a^{-1}a = e$

Then H is a subgroup of G.

prove theorem 1 by explaining why all 4 of the group properties must be true for H.

Theorem 2: If *G* is a group, then the identity element *e* is unique.

Unique means that e is the only element of G that has the identity property (group: property 3)

Theorem 3: If G is a group, then every element of G has a unique inverse.

Theorem 4 If G is a group and $a, b \in G$ then $(ab)^{-1} = b^{-1}a^{-1}$

Theorem 5 If G is a group and $a \in G$ then $(a^{-1})^{-1} = a$

Definition/Notation: If G is a group and $a \in G$ then $a^2 = aa$ and $a^n = \underline{aa...a}_{n \text{ factors}}$ if n is a positive

integer. $a^n = \underbrace{a^{-1}a^{-1}...a^{-1}}_{|n| \text{ factors}}$ if *n* is a negative integer and $a^0 = e$ where *e* is the identity.

Theorem 6 If G is a group and $a \in G$ then $a^n a^m = a^{n+m}$

prove the theorem for the cases:

a) n=0 or m=0
b) n>0 and m>0
c) n>0 and m<0
d) n<0 and m>0
e) n<0 and m<0

Theorem 7: Function composition is associative.

Theorem 8: The D_3 , the set of symmetry transformations of an equilateral triangle, is a group, where the group operation is function composition.

Unless you are specifically asked to prove one of these is a group (eg. Thm 8), you may assume that all of these are groups:

 \mathbb{C} = complex numbers (with addition)

 D_n = dihedral group of degree *n* (symmetries of a regular *n*-gon, with operation function composition), for integers $n \ge 3$

 S_n = permutation group of degree n = symmetric group of degree n (permutations of n elements, where n is a positive integer, with operation function composition)

$$M_{2} = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\} = \text{real valued } 2x2 \text{ matrices (with addition)}$$

Additionally, you may assume that we know that multiplication is associative for $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$ and M_2 , and multiplication is commutative for $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$

Definition: The order of a group is the number of elements in the group.

Definition: In a group G with element $a \in G$, if $a^n = e$ for some integer n > 0, then the element a has finite order. If k is the smallest positive integer such that $a^n = e$, then a has order k. If $a^n \neq e$ for every positive integer n, then a has infinite order.

Definition: In a group G with elements $a, b \in G$, the set $\langle a \rangle \subseteq G$ is the smallest subgroup of G that contains a, and $\langle a, b \rangle$ is the smallest subgroup of G that contains both a and b.

Lemma 9: In a group *G* (with the default multiplicative notation for the binary operation), and $a \in G$ then $\{a^n \mid n \in \mathbb{Z}\} \subseteq \langle a \rangle$

Lemma 10: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\{a^n \mid n \in \mathbb{Z}\}$ is a subgroup of G.

Theorem 11: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\{a^n \mid n \in \mathbb{Z}\} = \langle a \rangle$

Definition: A group *G* is **commutative** if for every pair of elements $a, b \in G$, ab = ba. A commutative group is also called an **abelian** group.

Theorem 12: In a group G, with element $a \in G$, then $\langle a \rangle$ is an abelian group.

Definition: For two integers $n, m \in \mathbb{Z}$, the following statements are equivalent:

- $n \mid m$ (say: "*n* divides *m*")
- *m* is evenly divisible by *n*
- n is a factor of m
- m = nk for some integer $k \in \mathbb{Z}$

Definition: Two elements, numbers, groups, functions etc. are **distinct** if they are not equal. This is a common word in math, and not specific to Abstract Algebra.

Theorem 13: If G is a group and $a \in G$ such that $a^i = a^j$ for two distinct integers $i \neq j$, then a has finite order.

Theorem 14: If G is a group and $a \in G$ has infinite order, then all of the elements a^n where $n \in \mathbb{Z}$ are distinct.

Definition: Given a group G with operation * and H is a group with operation #, and $f: G \to H$ is a function. The function f is called a **homomorphism** if it preserves the group operation, which means for any $a, b \in G$, f(a*b) = f(a) # f(b)

Definition: Given sets S and T, a function $f: S \to T$ is **1-to-1** if for every $a, b \in S$, if f(a) = f(b) then a = b. A 1-to-1 function is called an **injection**.

Theorem 15: Given sets *S* and *T*, a function $f: S \rightarrow T$, the following conditions are equivalent:

- For every $a, b \in S$, if f(a) = f(b) then a = b
- For every $a, b \in S$ if $a \neq b$ then $f(a) \neq f(b)$
- For every $t \in T$ the set $f^{-1}(t) = \{s \in S \mid f(s) = t\}$ contains at most one element.

Definition: Given sets *S* and *T*, a function $f: S \to T$ is **onto** if for every $t \in T$, there exists an element $s \in S$ such that f(s) = t.

Theorem 16: Given sets *S* and *T*, a function $f: S \rightarrow T$, the following conditions are equivalent:

- For every $t \in T$, there exists an element $s \in S$ such that f(s) = t.
- For every $t \in T$ the set $f^{-1}(t) = \{s \in S \mid f(s) = t\}$ contains at least one element.

Definition: Given groups G and H, and function $f: G \rightarrow H$, then f is an **isomorphism** if it is a 1-to-1 and onto homomorphism.

Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest element.

Theorem 17: Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$ (*b* is a positive integer), then there exist unique integers q, r such that a = bq + r and $0 \le r < b$

Definition: Let *a* and *b* be integers where not both are zero, then d = gcd(a,b) is the greatest common divisor of *a* and *b*, which means:

- $d \mid a \text{ and } d \mid b$
- If $c \mid a$ and $c \mid b$ then $c \leq d$

Note: our textbook writes (a,b) = gcd(a,b)

Theorem 18 (1.2): Let *a* and *b* be integers where not both are zero, and d = gcd(a,b). There exist $u, v \in \mathbb{Z}$ such that d = au + bv

Theorem 19 (1.3): Let *a* and *b* be integers where not both are zero, and d = gcd(a,b). Then if $c \mid a$ and $c \mid b$ then $c \mid d$

Theorem 20 (1.4): Let $a, b, c \in \mathbb{Z}$ such that $a \mid bc$ and gcd(a, b) = 1 then $a \mid c$

Theorem 20.5: Let $a, b, c \in \mathbb{Z}$, and let d = gcd(a, b). Then ax + by = c has integer solutions if and only if $d \mid c$ (pg. 16 # 24)

Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **prime** means:

Given $b, c \in \mathbb{Z}$, if $p \mid bc$ then $p \mid b$ or $p \mid c$

Definition: Let *p* be an integer such that $p \neq 0, \pm 1$, then *p* is **irreducible** means the only divisors of *p* are ± 1 and $\pm p$

Theorem 21: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is irreducible.

Theorem 22 (1.6): Let *p* be a prime integer and let $p | a_1 a_2 ... a_n$ then *p* divides at least one of the factors a_i .

Theorem 23 (1.7): Every integer *n* except $0, \pm 1$ is a product of primes.

Theorem 24 (Fundamental Theorem of Arithmetic, 1.8): If $n \in \mathbb{Z}$ and $n \neq 0, \pm 1$ then *n* is a product of primes, and the prime factorization is unique in the sense that if

 $n = p_1 p_2 \dots p_r$ and $n = q_1 q_2 \dots q_s$

such that all of the p_i and q_j are prime,

then r = s and the q_i factors can be re-ordered such that $p_i = \pm q_i$

(We can use a permutation to write $f: \{1, 2, ..., s\} \rightarrow \{1, 2, ..., s\}$ is a permutation, and $p_i = \pm q_{f(i)}$)

Definition: Let *a*, *b*, *n* be integers, with n > 0, then *a* is congruent to *b* modulo *n* if n | (b-a). This is most often written $a \equiv b \pmod{n}$. If it is clear from the context of the problem, that all numbers are to be considered mod *n*, you will sometimes see $a \equiv b$ or a = b.

Theorem 25: Let *a*, *b*, *n* be integers, with n > 0, then

- a) $a \equiv a \pmod{n}$
- b) If $a \equiv b \pmod{n}$ then $b \equiv a \pmod{n}$
- c) If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$

Definition: Let *a*, *b*, *n* be integers, with n > 0, then the **congruence class of** *a* **modulo** *n* is the set of all integers congruent to *a* modulo *n*. Sometimes we write [a] or $[a]_n$, and the equivalence class is defined to be $\{b | b \in \mathbb{Z} \text{ and } b \equiv a \pmod{n}\}$.

Theorem 26: $[a]_n = [c]_n$ if and only if $a \equiv c \pmod{n}$

Theorem 27: If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then

- a) $a+c \equiv b+d \pmod{n}$
- b) $ac \equiv bd \pmod{n}$

Definition: The set of all congruence classes modulo *n* is denoted \mathbb{Z}_n , which is called "Z-n" or the "integers mod n" or "mod n numbers". Elements of \mathbb{Z}_n are sometimes written as $[a]_n$ or [a] but usually they are just written *a*. Each congruence class has a simplest form, which is the element of the equivalence class in the range $0 \le a < n$. In most cases, you should give answers to questions in \mathbb{Z}_n in simplest form.

Definition: A ring is a set of elements R together with two binary operations that are denoted as addition (+) and multiplication (×or ·) with the properties:

- 1) *R* is closed under addition: if $a, b \in R$ then $a + b \in R$
- 2) Addition is associative: if $a, b, c \in R$ then (a+b)+c = a+(b+c)
- 3) Addition is commutative: if $a, b \in R$ then a+b=b+a
- 4) *R* has an additive identity: there exists an element $0 \in R$ such that 0 + a = a
- 5) Every element in *R* has an additive inverse: if $a \in R$ then $-a \in R$ such that a + -a = 0
- 6) *R* is closed under multiplication: if $a, b \in R$ then $ab \in R$
- 7) Multiplication is associative: if $a, b, c \in R$ then (ab)c = a(bc)
- 8) Multiplication is distributive over addition: if $a, b, c \in R$ then a(b+c) = ab + ac and (b+c)a = ba + ca

Definition: A ring *R* is a **commutative ring** if multiplication is commutative. That is: if $a, b \in R$ then ab = ba

Theorem 28: \mathbb{Z}_n is a commutative ring.

Theorem 29: If $R, +, \cdot$ is a ring, then R, + is an abelian group

Theorem 29.5: If $R, +, \cdot$ is a ring, and $a \in R$ then $a \cdot 0 = 0 \cdot a = 0$ (hint: 0+0=0)

Definition: A ring, *R*, is a ring with **identity** or a ring with **unity** if it has a multiplicative identity: i.e. If there exists an element $1 \in R$ such that $1 \cdot a = a \cdot 1 = a$ for all $a \in R$

Definition: Given a ring *R* with identity, then an element $a \in R$ is a **unit** if it has a multiplicative inverse in *R*: i.e. $a \in R$ is a **unit** if there exists an element $a^{-1} \in R$ such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$

Definition: Given a ring R, then an element $a \in R$ is **zero-divisor** if it is one of a non-zero pair of elements whose product is 0: i.e. $a \in R$ is a **zero-divisor** if there is an element $b \in R$ such that $a \neq 0$ and $b \neq 0$ and ab = 0 or ba = 0.

Theorem 30: Prove that any element a of a ring R can't be both a unit and a zero divisor.

Theorem 31: For any non-zero element $a \in \mathbb{Z}_n$, prove that gcd(a, n) = 1 if and only if *a* is a unit.

Theorem 32: Given that p > 0 is a prime integer, prove that every non-zero element of \mathbb{Z}_p is a unit.

Theorem 33: For any non-zero element $a \in \mathbb{Z}_n$, prove that gcd(a, n) > 1 if and only if *a* is a zero-divisor.

Theorem 34: The additive identity of a ring *R* is unique.

Theorem 35: The multiplicative identity of a ring with identity (*R*) is unique.

Theorem 36: For any element *a* of a ring *R*, the additive inverse of *a* is unique.

Theorem 37: For any unit *a* of a ring *R*, the multiplicative inverse of *a* is unique.

Definition: A commutative ring with identity, R, is an integral domain if it has no zero-divisors

Definition: A **field** is a commutative ring with identity, where all of the non-zero elements are units.

Definition: If *R* is a ring, then a subset $S \subseteq R$ is a subring of *R* if it is a ring (using the same operations that are defined for *R*).

Theorem 38: If *R* is a ring, then a subset $S \subseteq R$ is a subring of *R* if it satisfies the conditions:

- i. S is closed under addition (if $a, b \in S$ then $a + b \in S$)
- ii. S is closed under multiplication (if $a, b \in S$ then $ab \in S$)
- iii. every element of S has an additive inverse in S (if $a \in S$ then $-a \in S$ where a + -a = 0)

Theorem 39: If $a, b \in R$ then a(-b) = -(ab) and (-a)b = -(ab)

Theorem 40: If $a \in R$ then -(-a) = a

Theorem 41: If $a, b \in R$ then -(a+b) = -a+-b

Theorem 42: If $a, b \in R$ then (-a)(-b) = ab

Definition: Saying that ring *R*, has the **multiplicative cancellation property** means: for $a,b,c \in R$, if ab = ac or ba = ca then b = c

Theorem 43: A ring *R* has the multiplicative cancellation property if and only if *R* has no zero divisors.

Theorem 44: If $S \subseteq R$ and $T \subseteq R$ are both subrings of R, then $S \cap T$ is a subring of R.

Theorem 45: If *R* is a ring and $a \in R$ then the set $aR = \{ax \mid x \in R\} \subseteq R$ is a subring of *R* and the set $Ra = \{xa \mid x \in R\} \subseteq R$ is a subring of *R*.

Definition: If R and S are rings and $f: R \to S$ is a function and $a, b \in R$, then f is a ring **homomorphism** if f(a+b) = f(a) + f(b) and f(ab) = f(a)f(b).

Definition: If *R* and *S* are rings and $f: R \to S$ is a function, then *f* is a ring **isomorphism** if it is a ring homomorphism, and it is one-to-one and onto.

Theorem 46: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, and if we name the additive identities of *R* and *S* to be 0_R and 0_S respectively, then $f(0_R) = 0_S$

Theorem 47: If *R* and *S* are rings, and $f: R \to S$ is a ring homomorphism, and $a \in R$, then f(-a) = -f(a).

Theorem 48: If *R* and *S* are rings, and $f : R \to S$ is a ring homomorphism, then $f(R) = \{f(x) | x \in R\}$ is a subring of *S*.

Theorem 49: Given a ring R, we can adjoin a formal element x to create a ring R[x] of formal polynomials with coefficients in R with the following properties:

- R is a subring of R[x]
- If $a \in R$ then ax = xa (note: elements of *R* commute with *x*, but they don't necessarily commute with each other)
- Every element has a unique representation as a polynomial.

Definition: The **degree** of a polynomial $p(x) \in R[x]$ is the highest exponent that has a non-zero coefficient.

Theorem 50: If *D* is an integral domain, and $f(x), g(x) \in D[x]$, then $\deg(f(x) \cdot g(x)) = \deg(f(x)) + \deg(g(x))$

Theorem 51: If D is an integral domain, then D[x] is also an integral domain.

Theorem 52: If F is a field, then F[x] is an integral domain, and the units in F[x] are the non-zero constants in F.

Theorem 53: If *F* is a field, and $f(x), g(x) \in F[x]$ such that $g(x) \neq 0$, then there exist unique polynomials q(x) and r(x) such that f(x) = g(x)q(x) + r(x) where either $\deg(r(x)) < \deg(g(x))$ or r(x) = 0.

Definition: If F is a field, and $f(x), g(x) \in F[x]$, then f(x) divides g(x), or f(x) is a factor of g(x), or g(x) is a multiple of f(x) means that there is an $h(x) \in F[x]$ such that g(x) = f(x)h(x). We write f(x) | g(x).

Theorem 54: If F is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0$, $c \in F$ such that $c \neq 0$, and if f(x) | g(x) then cf(x) | g(x)

Definition: If *R* is a ring with identity, then a **monic** polynomial in R[x] is a polynomial whose leading coefficient is 1. (Note: the leading coefficient of a polynomial is the coefficient of the term with the highest exponent of *x*.

Definition: If *F* is a field, and $f(x), g(x) \in F[x]$ such that not both of *f* and *g* are 0, then the **greatest common divisor** of *f* and *g* is the monic polynomial of highest degree that divides both f(x) and g(x).

Theorem 55: If *F* is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0$ or $g(x) \neq 0$, then there is a unique greatest common divisor d(x) = gcd(f(x), g(x)), and there exist polynomials $u(x), v(x) \in F[x]$ (not necessarily unique) such that d(x) = u(x)f(x) + v(x)g(x)

Theorem 56: If F is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0$ or $g(x) \neq 0$, then a monic polynomial d(x) is the greatest common divisor of f and g if and only if

- $d(x) \mid f(x)$ and $d(x) \mid g(x)$
- If c(x) | f(x) and c(x) | g(x) then c(x) | d(x)

Definition: If F is a field, and $f(x), g(x) \in F[x]$, then f(x) and g(x) are **associates** if f(x) = cg(x) where $c \in F$ and $c \neq 0$.

Definition: Let *F* be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then p(x) is **irreducible** if its only divisors are non-zero constants and its associates.

Definition: Let *F* be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then p(x) is **prime** if for any $f(x), g(x) \in F[x]$ such that p(x) | f(x)g(x) then p(x) | f(x) or p(x) | g(x)

Theorem 58: Let F be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then p(x) is prime if and only if it is irreducible.

Theorem 58: Let F be a field and let $f(x) \in F[x]$ be a non-constant polynomial, then f(x) is factorable into irreducible polynomials, and that factorization is unique up to associates.