Abstract Algebra Notes

Definition A group is a set of elements G together with a binary operation \# that have the properties:

1. Closure: If $a, b \in G$ then $a \# b \in G$
2. Associativity: If $a, b, c \in G$ then $a \#(b \# c)=(a \# b) \# c$
3. Identity under \#: There is an element $e \in G$ such that if $a \in G$ then $a \# e=e \# a=a$
4. Inverses under \#: For each $a \in G$ there is an element $a^{-1} \in G$ such that $a \# a^{-1}=a^{-1} \# a=e$.

As a default, we will use multiplication as the group operation, in which case the above properties are written:

1. Closure: If $a, b \in G$ then $a b \in G$
2. Associativity: If $a, b, c \in G$ then $a(b c)=(a b) c$
3. Identity: There is an element $e \in G$ such that if $a \in G$ then $a e=e a=a$
4. Inverses: For each $a \in G$ there is an element $a^{-1} \in G$ such that $a a^{-1}=a^{-1} a=e$.

Definition If G is a group, and $H \subseteq G$ is a subset of G, such that H is a group, then H is a subgroup of G.

Theorem 1: If G is a group, and $H \subseteq G$ is a non-empty subset of G such that

1. H is closed: if $a, b \in H$ then $a b \in H$
2. The inverse of every element in H is also in H : If $a \in H$ then there is an element $a^{-1} \in H$ such that $a a^{-1}=a^{-1} a=e$
Then H is a subgroup of G.
prove theorem 1 by explaining why all 4 of the group properties must be true for H.
Theorem 2: If G is a group, then the identity element e is unique.
Unique means that e is the only element of G that has the identity property (group: property 3)
Theorem 3: If G is a group, then every element of G has a unique inverse.
Theorem 4 If G is a group and $a, b \in G$ then $(a b)^{-1}=b^{-1} a^{-1}$
Theorem 5 If G is a group and $a \in G$ then $\left(a^{-1}\right)^{-1}=a$
Definition/Notation: If G is a group and $a \in G$ then $a^{2}=a a$ and $a^{n}=\underbrace{a a \ldots a}_{n \text { factors }}$ if n is a positive integer. $a^{n}=\underbrace{a^{-1} a^{-1} \ldots a^{-1}}_{|n| \text { factors }}$ if n is a negative integer and $a^{0}=e$ where e is the identity.

May 8, 2019
Theorem 6 If G is a group and $a \in G$ then $a^{n} a^{m}=a^{n+m}$
prove the theorem for the cases:
a) $n=0$ or $m=0$
b) $n>0$ and $m>0$
c) $n>0$ and $m<0$
d) $n<0$ and $m>0$
e) $n<0$ and $m<0$

Theorem 7: Function composition is associative.
Theorem 8: The D_{3}, the set of symmetry transformations of an equilateral triangle, is a group, where the group operation is function composition.

Unless you are specifically asked to prove one of these is a group (eg. Thm 8), you may assume that all of these are groups:
$\mathbb{C}=$ complex numbers (with addition)
$D_{n}=$ dihedral group of degree n (symmetries of a regular n-gon, with operation function composition), for integers $n \geq 3$
$S_{n}=$ permutation group of degree $n=$ symmetric group of degree n (permutations of n elements, where n is a positive integer, with operation function composition)
$M_{2}=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right\}=$ real valued 2×2 matrices (with addition)
Additionally, you may assume that we know that multiplication is associative for $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$ and M_{2}, and multiplication is commutative for $\mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}$

Definition: The order of a group is the number of elements in the group.
Definition: In a group G with element $a \in G$, if $a^{n}=e$ for some integer $n>0$, then the element a has finite order. If k is the smallest positive integer such that $a^{n}=e$, then a has order k. If $a^{n} \neq e$ for every positive integer n, then a has infinite order.

Definition: In a group G with elements $a, b \in G$, the set $\langle a\rangle \subseteq G$ is the smallest subgroup of G that contains a, and $\langle a, b\rangle$ is the smallest subgroup of G that contains both a and b.

Lemma 9: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\left.\left\{a^{n} \mid n \in \mathbb{Z}\right\} \subseteq<a\right\rangle$

Lemma 10: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G.

May 8, 2019
Theorem 11: In a group G (with the default multiplicative notation for the binary operation), and $a \in G$ then $\left\{a^{n} \mid n \in \mathbb{Z}\right\}=<a>$

Definition: A group G is commutative if for every pair of elements $a, b \in G, a b=b a$. A commutative group is also called an abelian group.
Theorem 12: In a group G, with element $a \in G$, then $\langle a\rangle$ is an abelian group.
Definition: For two integers $n, m \in \mathbb{Z}$, the following statements are equivalent:

- $n \mid m$ (say: " n divides m ")
- m is evenly divisible by n
- n is a factor of m
- $m=n k$ for some integer $k \in \mathbb{Z}$

Definition: Two elements, numbers, groups, functions etc. are distinct if they are not equal. This is a common word in math, and not specific to Abstract Algebra.

Theorem 13: If G is a group and $a \in G$ such that $a^{i}=a^{j}$ for two distinct integers $i \neq j$, then a has finite order.

Theorem 14: If G is a group and $a \in G$ has infinite order, then all of the elements a^{n} where $n \in \mathbb{Z}$ are distinct.

Definition: Given a group G with operation * and H is a group with operation \#, and $f: G \rightarrow H$ is a function. The function f is called a homomorphism if it preserves the group operation, which means for any $a, b \in G, f(a * b)=f(a) \# f(b)$

Definition: Given sets S and T, a function $f: S \rightarrow T$ is 1-to-1 if for every $a, b \in S$, if $f(a)=f(b)$ then $a=b$. A 1-to-1 function is called an injection.

Theorem 15: Given sets S and T, a function $f: S \rightarrow T$, the following conditions are equivalent:

- For every $a, b \in S$, if $f(a)=f(b)$ then $a=b$
- For every $a, b \in S$ if $a \neq b$ then $f(a) \neq f(b)$
- For every $t \in T$ the set $f^{-1}(t)=\{s \in S \mid f(s)=t\}$ contains at most one element.

Definition: Given sets S and T, a function $f: S \rightarrow T$ is onto if for every $t \in T$, there exists an element $s \in S$ such that $f(s)=t$.

Theorem 16: Given sets S and T, a function $f: S \rightarrow T$, the following conditions are equivalent:

- For every $t \in T$, there exists an element $s \in S$ such that $f(s)=t$.
- For every $t \in T$ the set $f^{-1}(t)=\{s \in S \mid f(s)=t\}$ contains at least one element.

Definition: Given groups G and H, and function $f: G \rightarrow H$, then f is an isomorphism if it is a 1-to-1 and onto homomorphism.

May 8, 2019
Well Ordering Axiom Every non-empty subset of the non-negative integers contains a smallest element.

Theorem 17: Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{+}$(b is a positive integer), then there exist unique integers q, r such that $a=b q+r$ and $0 \leq r<b$

Definition: Let a and b be integers where not both are zero, then $d=\operatorname{gcd}(a, b)$ is the greatest common divisor of a and b, which means:

- $\quad d \mid a$ and $d \mid b$
- If $c \mid a$ and $c \mid b$ then $c \leq d$

Note: our textbook writes $(a, b)=\operatorname{gcd}(a, b)$
Theorem 18 (1.2): Let a and b be integers where not both are zero, and $d=\operatorname{gcd}(a, b)$. There exist $u, v \in \mathbb{Z}$ such that $d=a u+b v$

Theorem 19 (1.3): Let a and b be integers where not both are zero, and $d=\operatorname{gcd}(a, b)$. Then if $c \mid a$ and $c \mid b$ then $c \mid d$

Theorem 20 (1.4): Let $a, b, c \in \mathbb{Z}$ such that $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$
Theorem 20.5: Let $a, b, c \in \mathbb{Z}$, and let $d=\operatorname{gcd}(a, b)$. Then $a x+b y=c$ has integer solutions if and only if $d \mid c$ (pg. 16 \#24)

Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is prime means:
Given $b, c \in \mathbb{Z}$, if $p \mid b c$ then $p \mid b$ or $p \mid c$
Definition: Let p be an integer such that $p \neq 0, \pm 1$, then p is irreducible means the only divisors of p are ± 1 and $\pm p$

Theorem 21: An integer p be an integer such that $p \neq 0, \pm 1$ is prime if and only of it is irreducible.

Theorem 22 (1.6): Let p be a prime integer and let $p \mid a_{1} a_{2} \ldots a_{n}$ then p divides at least one of the factors a_{i}.

Theorem 23 (1.7): Every integer n except $0, \pm 1$ is a product of primes.
Theorem 24 (Fundamental Theorem of Arithmetic, 1.8): If $n \in \mathbb{Z}$ and $n \neq 0, \pm 1$ then n is a product of primes, and the prime factorization is unique in the sense that if

$$
n=p_{1} p_{2} \ldots p_{r} \text { and } n=q_{1} q_{2} \ldots q_{s}
$$

such that all of the p_{i} and q_{j} are prime,
then $r=s$ and the q_{j} factors can be re-ordered such that $p_{i}= \pm q_{i}$
(We can use a permutation to write $f:\{1,2, \ldots s\} \rightarrow\{1,2, \ldots s\}$ is a permutation, and $p_{i}= \pm q_{f(i)}$)

May 8, 2019
Definition: Let a, b, n be integers, with $n>0$, then \boldsymbol{a} is congruent to \boldsymbol{b} modulo \boldsymbol{n} if $n \mid(b-a)$. This is most often written $a \equiv b(\bmod n)$. If it is clear from the context of the problem, that all numbers are to be considered $\bmod n$, you will sometimes see $a \equiv b$ or $a=b$.

Theorem 25: Let a, b, n be integers, with $n>0$, then
a) $a \equiv a(\bmod n)$
b) If $a \equiv b(\bmod n)$ then $b \equiv a(\bmod n)$
c) If $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$

Definition: Let a, b, n be integers, with $n>0$, then the congruence class of \boldsymbol{a} modulo \boldsymbol{n} is the set of all integers congruent to a modulo n. Sometimes we write $[a]$ or $[a]_{n}$, and the equivalence class is defined to be $\{b \mid b \in \mathbb{Z}$ and $b \equiv a(\bmod n)\}$.

Theorem 26: $[a]_{n}=[c]_{n}$ if and only if $a \equiv c(\bmod n)$
Theorem 27: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$ then
a) $a+c \equiv b+d(\bmod n)$
b) $a c \equiv b d(\bmod n)$

Definition: The set of all congruence classes modulo n is denoted \mathbb{Z}_{n}, which is called "Z-n" or the "integers mod n " or " $\bmod \mathrm{n}$ numbers". Elements of \mathbb{Z}_{n} are sometimes written as $[a]_{n}$ or $[a]$ but usually they are just written a. Each congruence class has a simplest form, which is the element of the equivalence class in the range $0 \leq a<n$. In most cases, you should give answers to questions in \mathbb{Z}_{n} in simplest form.

Definition: A ring is a set of elements R together with two binary operations that are denoted as addition $(+)$ and multiplication (\times or \cdot) with the properties:

1) R is closed under addition: if $a, b \in R$ then $a+b \in R$
2) Addition is associative: if $a, b, c \in R$ then $(a+b)+c=a+(b+c)$
3) Addition is commutative: if $a, b \in R$ then $a+b=b+a$
4) R has an additive identity: there exists an element $0 \in R$ such that $0+a=a$
5) Every element in R has an additive inverse: if $a \in R$ then $-a \in R$ such that $a+-a=0$
6) R is closed under multiplication: if $a, b \in R$ then $a b \in R$
7) Multiplication is associative: if $a, b, c \in R$ then $(a b) c=a(b c)$
8) Multiplication is distributive over addition: if $a, b, c \in R$ then $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$

Definition: A ring R is a commutative ring if multiplication is commutative. That is: if $a, b \in R$ then $a b=b a$

Theorem 28: \mathbb{Z}_{n} is a commutative ring.

May 8, 2019
Theorem 29: If $R,+, \cdot$ is a ring, then $R,+$ is an abelian group
Theorem 29.5: If $R,+, \cdot$ is a ring, and $a \in R$ then $a \cdot 0=0 \cdot a=0$ (hint: $0+0=0$)
Definition: A ring, R, is a ring with identity or a ring with unity if it has a multiplicative identity: i.e. If there exists an element $1 \in R$ such that $1 \cdot a=a \cdot 1=a$ for all $a \in R$

Definition: Given a ring R with identity, then an element $a \in R$ is a unit if it has a multiplicative inverse in R : i.e. $a \in R$ is a unit if there exists an element $a^{-1} \in R$ such that $a \cdot a^{-1}=a^{-1} \cdot a=1$

Definition: Given a ring R, then an element $a \in R$ is zero-divisor if it is one of a non-zero pair of elements whose product is 0 : i.e. $a \in R$ is a zero-divisor if there is an element $b \in R$ such that $a \neq 0$ and $b \neq 0$ and $a b=0$ or $b a=0$.

Theorem 30: Prove that any element a of a ring R can't be both a unit and a zero divisor.
Theorem 31: For any non-zero element $a \in \mathbb{Z}_{n}$, prove that $\operatorname{gcd}(a, n)=1$ if and only if a is a unit.
Theorem 32: Given that $p>0$ is a prime integer, prove that every non-zero element of \mathbb{Z}_{p} is a unit.

Theorem 33: For any non-zero element $a \in \mathbb{Z}_{n}$, prove that $\operatorname{gcd}(a, n)>1$ if and only if a is a zero-divisor.

Theorem 34: The additive identity of a ring R is unique.
Theorem 35: The multiplicative identity of a ring with identity (R) is unique.
Theorem 36: For any element a of a ring R, the additive inverse of a is unique.
Theorem 37: For any unit a of a ring R, the multiplicative inverse of a is unique.
Definition: A commutative ring with identity, R, is an integral domain if it has no zero-divisors
Definition: A field is a commutative ring with identity, where all of the non-zero elements are units.

Definition: If R is a ring, then a subset $S \subseteq R$ is a subring of R if it is a ring (using the same operations that are defined for R).

Theorem 38: If R is a ring, then a subset $S \subseteq R$ is a subring of R if it satisfies the conditions:
i. $\quad S$ is closed under addition (if $a, b \in S$ then $a+b \in S$)
ii. $\quad S$ is closed under multiplication (if $a, b \in S$ then $a b \in S$)
iii. every element of S has an additive inverse in S (if $a \in S$ then $-a \in S$ where $a+-a=0$)

May 8, 2019
Theorem 39: If $a, b \in R$ then $a(-b)=-(a b)$ and $(-a) b=-(a b)$
Theorem 40: If $a \in R$ then $-(-a)=a$
Theorem 41: If $a, b \in R$ then $-(a+b)=-a+-b$
Theorem 42: If $a, b \in R$ then $(-a)(-b)=a b$
Definition: Saying that ring R, has the multiplicative cancellation property means: for $a, b, c \in R$, if $a b=a c$ or $b a=c a$ then $b=c$

Theorem 43: A ring R has the multiplicative cancellation property if and only if R has no zero divisors.

Theorem 44: If $S \subseteq R$ and $T \subseteq R$ are both subrings of R, then $S \cap T$ is a subring of R.
Theorem 45: If R is a ring and $a \in R$ then the set $a R=\{a x \mid x \in R\} \subseteq R$ is a subring of R and the set $R a=\{x a \mid x \in R\} \subseteq R$ is a subring of R.

Definition: If R and S are rings and $f: R \rightarrow S$ is a function and $a, b \in R$, then f is a ring homomorphism if $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$.

Definition: If R and S are rings and $f: R \rightarrow S$ is a function, then f is a ring isomorphism if it is a ring homomorphism, and it is one-to-one and onto.

Theorem 46: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, and if we name the additive identities of R and S to be 0_{R} and 0_{S} respectively, then $f\left(0_{R}\right)=0_{S}$

Theorem 47: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, and $a \in R$, then $f(-a)=-f(a)$.

Theorem 48: If R and S are rings, and $f: R \rightarrow S$ is a ring homomorphism, then $f(R)=\{f(x) \mid x \in R\}$ is a subring of S.

Theorem 49: Given a ring R, we can adjoin a formal element x to create a ring $R[x]$ of formal polynomials with coefficients in R with the following properties:

- R is a subring of $R[x]$
- If $a \in R$ then $a x=x a$ (note: elements of R commute with x, but they don't necessarily commute with each other)
- Every element has a unique representation as a polynomial.

Definition: The degree of a polynomial $p(x) \in R[x]$ is the highest exponent that has a non-zero coefficient.

Theorem 50: If D is an integral domain, and $f(x), g(x) \in D[x]$, then
$\operatorname{deg}(f(x) \cdot g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x))$
Theorem 51: If D is an integral domain, then $D[x]$ is also an integral domain.

May 8, 2019
Theorem 52: If F is a field, then $F[x]$ is an integral domain, and the units in $F[x]$ are the nonzero constants in F.

Theorem 53: If F is a field, and $f(x), g(x) \in F[x]$ such that $g(x) \neq 0$, then there exist unique polynomials $q(x)$ and $r(x)$ such that $f(x)=g(x) q(x)+r(x)$ where either $\operatorname{deg}(r(x))<\operatorname{deg}(g(x))$ or $r(x)=0$.

Definition: If F is a field, and $f(x), g(x) \in F[x]$, then $f(x)$ divides $g(x)$, or $f(x)$ is a factor of $g(x)$, or $g(x)$ is a multiple of $f(x)$ means that there is an $h(x) \in F[x]$ such that $g(x)=f(x) h(x)$. We write $f(x) \mid g(x)$.

Theorem 54: If F is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0, c \in F$ such that $c \neq 0$, and if $f(x) \mid g(x)$ then $c f(x) \mid g(x)$

Definition: If R is a ring with identity, then a monic polynomial in $R[x]$ is a polynomial whose leading coefficient is 1 . (Note: the leading coefficient of a polynomial is the coefficient of the term with the highest exponent of x.

Definition: If F is a field, and $f(x), g(x) \in F[x]$ such that not both of f and g are 0 , then the greatest common divisor of f and g is the monic polynomial of highest degree that divides both $f(x)$ and $g(x)$.

Theorem 55: If F is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0$ or $g(x) \neq 0$, then there is a unique greatest common divisor $d(x)=\operatorname{gcd}(f(x), g(x))$, and there exist polynomials $u(x), v(x) \in F[x]$ (not necessarily unique) such that $d(x)=u(x) f(x)+v(x) g(x)$

Theorem 56: If F is a field, and $f(x), g(x) \in F[x]$ such that $f(x) \neq 0$ or $g(x) \neq 0$, then a monic polynomial $d(x)$ is the greatest common divisor of f and g if and only if

- $\quad d(x) \mid f(x)$ and $d(x) \mid g(x)$
- If $c(x) \mid f(x)$ and $c(x) \mid g(x)$ then $c(x) \mid d(x)$

Definition: If F is a field, and $f(x), g(x) \in F[x]$, then $f(x)$ and $g(x)$ are associates if $f(x)=c g(x)$ where $c \in F$ and $c \neq 0$.

Definition: Let F be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then $p(x)$ is irreducible if its only divisors are non-zero constants and its associates.

Definition: Let F be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then $p(x)$ is prime if for any $f(x), g(x) \in F[x]$ such that $p(x) \mid f(x) g(x)$ then $p(x) \mid f(x)$ or $p(x) \mid g(x)$
Theorem 58: Let F be a field and let $p(x) \in F[x]$ be a non-constant polynomial, then $p(x)$ is prime if and only if it is irreducible.

Theorem 58: Let F be a field and let $f(x) \in F[x]$ be a non-constant polynomial, then $f(x)$ is factorable into irreducible polynomials, and that factorization is unique up to associates.

