This is the proof by induction that the formula works

$$a_{n} = 3 \cdot 3^{n} + 2(-1)^{n}$$
Solves
$$a_{n} = 2a_{n-1} + 3a_{n-2} = a_{0} = 5, a_{1} = 7$$
check:
$$3 \cdot 3^{0} + 2(-1)^{0} = 5 = a_{0} \quad \sqrt{3} \cdot 3^{1} + 2(-1)^{1} = 7 \quad a_{1} \quad \sqrt{3}$$
Suppose
$$a_{1} = 3 \cdot 3^{1} + 2(-1)^{1} = 7 \quad a_{1} \quad \sqrt{3}$$
Suppose
$$a_{1} = 3 \cdot 3^{1} + 2(-1)^{1}$$
For every
$$0 \leq i \leq k$$
(That means:
$$a_{k} = 3 \cdot 3^{k} + 2(-1)^{k}$$

$$a_{k-1} = 3 \cdot 3^{k-1} + 2(-1)^{k}$$

$$= 2 \cdot 3^{k+1} + 4(-1)^{k} + 3 \cdot 3^{k-1} + 2(-1)^{k-1}$$

$$= 2 \cdot 3^{k+1} + 4(-1)^{k} + 3 \cdot 3^{k} + 6(-1)^{k-1}$$

$$= 3 \cdot 3^{k+1} + 2(-1)^{k-1} + 3^{k+1} + (6(-1)^{k-1} + 3^{k+1} + (6(-1)^{k-1} + 3^{k+1} + 3^{k+1} + (6(-1)^{k-1} + 3^{k+1} + 3$$

,

This is exploring the difference equation by writing out several iterations

an= 2 an + 3 an - 2 a,=5, a,=7 a. = 5 9 = 7 Q,= 2.7 + 3.5 a3=2(2.7+3.5)+3.7 = 2-7+2.3.5+ 3.7 $a_{4} = 2(2^{2} \cdot 7 + 2 \cdot 3 \cdot 5 + 3 \cdot 7) + 3 \cdot (2 \cdot 7 + 3 \cdot 5)$ = 2³ · 7 + 2² · 3 · 5 + 2 · 3 · 7 + 2 · 3 · 7 + 3² · 5 = 23.7 + 2.3.5 + 2.2.3.7 + 3.5 $\alpha_{E} = 2(2^{3} \cdot 7 + 2^{7} \cdot 3 \cdot 5 + 2 \cdot 2 \cdot 3 \cdot 7 + 3^{7} \cdot 5)$ +3(23:7+2.3.5+3.7) = 24.7 + 23.3.5 + 2.2.3.7+2.3.5 + 22.3.7 +2.3.5 +3.7 = 24.7+23.3.5+3.23.3.7+2.2.3.5+3.7 a, = 2(24.7+23.3.5+3.27.3.7+2.2.3.5+3.7) $= 2^{5} \cdot 7 + 2^{4} \cdot 3 \cdot 5 + 3 \cdot 2^{3} \cdot 3 \cdot 7 + 2 \cdot 2 \cdot 3 \cdot 5 + 2 \cdot 3^{3} \cdot 5 + 2 \cdot 3^{3} \cdot 5 + 2 \cdot 3^{3} \cdot 7$ + 23.3.7 + 23.3.5 + 2.12.3.7 = 2 1 24.36+ 4.2.31 3.2.3 5+ 3 2.3 1+ 33 2^{n} 2^{n-1} 3^{n-2} 3^{n-3} 2^{n-1} 3^{n-1} 3^{n-1 23

This is deducing some useful facts about solutions to a difference equation if you ignore the initial conditions (a0 and a1)

- an = 2an-1 + 3an-2 imagine a sequence that does this. 50, 51, 52, 53, 54) --what a loom 250, 25, 252, 253, 1. ? $2(s_{n})=(2s_{n-1}+3s_{n-2})^{2}$ 2Sn=2(2sn-1)+3(2sn-2) if as at both work, how about stat? $5_{\rm N} = 2s_{\rm n-1} + 3s_{\rm n-2}$ $t_{\rm n} = 2t_{\rm n-1} + 3t_{\rm n-2}$ $t_n = 2t_{n-1} + 5t_{n-2}$ $(s_n + t_n) = 2(s_n + t_n) + 3(s_{n-2} + t_{n-2})$ 30 if I could find a solution that debut match as & 9, , I might be able to use it to find the Solution I want!

.....

This is investigating r^n as a possible solution to a difference equation (if there were a solution of the form r^n, what would r have to be?)

What about r"? Could it work w/ $r = 2r^{n-1} + 3r^{n-2}$ $r = 2r^{n-1} + 3r^{n-2}$ $r = 2r^{n-1} - 3r^{n-2} = 0$ $r^2 - 2r - 3 = 0$ (r-3)(r+1)=0r=3 dr=- should work check it ! $= 3^{n} - 2 \cdot 3^{n-1} + 3 \cdot 3^{n-2}$ $= 2 \cdot 3^{n-1} + 3^{n-1}$ $= 3 \cdot 3^{n-1} = 3^{n-1}$ $2(-1)^{n-1} + 3(-1)^{n-2}$ $= (-1)^{n-2} \begin{bmatrix} -2 + 3 \end{bmatrix}$ $= (-1)^{n-2} = (-1)^{n-2}$

The take away from this page is that if r^n is a solution to a difference equation a_n=A*a_n-1+B*a_n-2 then r has to be a solution to the quadratic equation

r^2=A*r+B which is equivalent to r^2-Ar-B=0

Here's how I use my two possible solutions to the difference equation to get a combination of the two that has the initial conditions that I want

Now live got 3ⁿ & (-1)^h which work
for
$$a_n = 2a_{n-1} + 3a_{n-2}$$
.
can I use those to match $a_0 = 5$
 $a_1 = 7$?

$$3^{\circ} = 1$$
 (-1) = ...

Make 2 equations in 2 variables and solve them

3'=3 (-1)'=-1 $u \cdot 3 + v(-1) = 7$ 4+V = 5 4u = 12W= 3 v = 2.

My formula is: $a_n = 3 \cdot 3^{h} + 2(-1)^{h}$ this is u*3^n+v*(-1)^n.

Let's check: $a_0 = 3 + 2 = 5$ $a_1 = 9 - 2 = 7$ $a_1 = 9 - 2 = 7$ first page. first page. $first j \le k$

then
$$a_{k+1} = \lambda a_k + 3 a_{k-1}$$

= $2 \left(3 \cdot 3^k + 2 (-1)^k \right) + 3 \left(3 \cdot 3^{k-1} + 2 (-1)^{k-1} \right)$
= $2 \cdot 3^{k+1} + 4 \cdot (-1)^k + 3 \cdot 4 \cdot (-1)^{k-1} + 4 \cdot (-1)^{k-1} + 3 \cdot 4 \cdot (-1)^{k-1} + (-1$