
Info about the chapter 11 test 

 

I. Expect 2-3 problems where you come up with an infinite series expansion for a function 

II. Expect 1-2 problems where you find an estimate for a function value, integral or infinite series 

III. Expect 1-2 problems where you find a radius of convergence or interpret a radius of convergence 

IV. Expect 2-3 problems where you show whether an infinite series converges or diverges using one of the tests 

 

More details: 

I. Infinite series for a function problems could be one of 

the following types: 

A. Find an infinite series using the geometric series 

formula: 
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Sample probs (find a power series expansion for each): 
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B. Find an infinite series using Taylor’s formula: 
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Sample probs: Find the first 4 non-zero terms of the 

Taylor series expansion for each function, centered at a 

     3. ( ) ln | |f x x=   3a =  

     4. ( )f x x=   25a =  

     5. ( ) cos 2f x x=   a π=  

C. Find a series by using a formula that is given to you 

Sample problems: 

6. Find the McLaurin series for 
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D. Find the series to represent an indefinite integral 

Sample problem: 

8. Find the McLaurin series for 
2sin( )x dx∫  given 
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9. Find the McLaurin series for cos x dx∫  given 
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II. Estimate using a series problems will be of one of the 

following types: 

A. Estimate a function value using a series: 

Sample probs. Do all calculations to at least 4 digits. 

9.   Estimate ln(1.5) using the first 5 terms of 
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10. Estimate 
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Compare to the calculator value, and find the error. 

B. Estimate a definite integral: 

11. Use the first 4 terms to estimate 
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12. Use the first 4 terms to estimate 
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C. Estimate a series and use an integral to find an interval 

that contains the exact value 

13. Use the first 5 terms to estimate the sum
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Use an integral find an interval that includes the exact 

answer. 

14. Use the first 5 terms to estimate the sum
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Use an integral find an interval that includes the exact 

answer. 

 

 

 

 

 

  

  

  



III. Radius of convergence problems could be one of the 

following types: 

A. Find the center and radius of convergence of a power 

series. 

Sample probs. Find the center and radius of convergence 

for each power series: 
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B. Know what an interval of convergence means: 

Sample probs:  

 19.  A power series 
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of convergence [2, 5). For each of these values of x, tell 

whether you can use the power series to estimate ( )f x   

a. x = 1    b. x = 2   c. x = 3   d. x = 4   e. x = 5   f. x = 6 

 20. A power series 
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of convergence (-3, 1].  

a. tell two values of x for which you can use the power 

series to estimate ( )f x  

b. tell two values of x for which the power series will 

not help you estimate ( )f x . 

21. If you wanted to estimate 
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to estimate the integral? Why or why not? 

 

IV. Show whether a series converges or diverges 

problems will be of one of the following types: 

A. A series where a specific test is requested: 

Sample probs.  

22. Prove that each of these series converges or 

diverges using the integral test:  
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23. Prove that this series converges or diverges using a 

comparison test:  
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B. A series where you should choose an appropriate test 

out of the series tests we have used in this chapter.  

Series tests you are most likely to need are  

• the ratio test,  

• the comparison test and  

• the alternating series test.    

You should also know that if the sequence of terms being 

added does not converge to 0, then the series diverges. 

Sample probs: show whether each converges or diverges 

using a test of your choice. 
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