Math 166 review for test 3:

1. Do everything (max, min, increasing, decreasing, inflection points, concavity, and horizontal asymptotes for:

 $y = \sin^2 x + 2\sin x$ in the interval $[0, 3\pi]$

2. Find these infinite limits:

3. Find the absolute max and mins for:

a. Find the absolute maxima and minima for: $y = x + 2\sin(x)$ $[-\pi, 2\pi]$

b. Find the absolute maxima and minima for: $y = x^{7/5} - 3x^{2/5}$

4. Tell the x-coordinates of the local maxima and local minima of f(x), given this graph of f'(x)

[-1, 2]

There will be at least one max/min problem in an applied context; probably a box problem, and fairly probably a weight or a cost problem.

5. I want to make a box with a square base and an open top that has the greatest possible volume, with a surface area of $9ft^2$. What should the dimensions of my box be?

6. I want to make a box with a square base and an open top that is subdivided into 4 sections inside as shown. I need the volume of my box to be 2 ft^3 . What should the dimensions of my box be so that I use the least material in constructing it? (assume that the subdivisions are made of the same material as the sides and base of the box)

7. I want to make a box with a square base and an open top that is subdivided into 4 sections inside as shown in #6. I need the volume of my box to be 2 ft³. The sides and base of the box weigh $60z/ft^2$, and the material I use to construct the inner subdivisions weighs $30z/ft^2$. What should the dimensions of my box be so that it weighs the least?

8. I want to make a box with a base whose length is 1.5 times its width, and with a lid whose volume is 3 ft^2 . The material for the base and sides costs \$.40 per ft^2 , and the cardboard for the lid costs \$.70 per ft^2 . What dimensions give me the cheapest box?

b. I want to make a box with a square base and an open top that is subdivided into 4 sections inside as shown in #12. I need the volume of my box to be 2 ft³. The cardboard for the sides and base of the box costs .50 per ft², and the cardboard for the insert sections costs .20 per ft². What dimensions give me the cheapest box?