Problems for practice:

Find the derivative of each:	5. When $p = 10$ then $q = 200$, when $p = 8$
1. $y = (5x+2)^4 \ln(x)$	then $q = 150$. Find a linear equation (demand
2. $y = (x^2 + 3)^4 \ln(5x - 1)$	function) relating p and q .
3. $y = (x^2 + 3x)^4 e^{2x+1}$	6. When $t = 50$ then $y = 120$, when $t = 60$
4. $y = \ln(2x+5)e^{3x}$	then $y = 100$. Find a linear equation relating t and y.
7. Given the demand function:	8. a. Given the demand function:
q = 60,000 - 240p	q = 120,000 - 2000 p
a. find the associated revenue function	a. find the associated revenue function
b. Given a per-item cost of \$70, find the profit	b. Given a per-item cost of \$10 and a fixed cost
function.	of \$25000, find the profit function.
c. Use b to maximize the profit:	c. Use b to maximize the profit:
i. What production quantity maximizes the	i. What production quantity maximizes the
ji What price point maximizes the profit?	ii What price point maximizes the profit?
iii What is the maximum profit?	iii What is the maximum profit?
Review with second derivatives:	Review with average cost:
5.3 # 65. 69. 73	11. Given a cost function of
9. The annual revenue of a product is related to	$C(x) = 12,000 + 210x + 01x^2$ (for x items)
the amount of money x spent on advertising by	Find the minimum average cost_tell both the
the following function:	production level (x) and the minimum average
$R =003x^{3} + 1.35x^{2} + 2x + 8000 (0 \le x \le 400)$	cost.
(R and x in thousands of dollars).	
a. Where is R concave up (change in revenue	
increasing/speeding up)? Where is R concave	
down (change in revenue decreasing/slowing	
down)?	
b. Is it more beneficial to increase the	
advertising budget slightly when $x = 140,000$	
or when $x = 160,000$	
10. Yearly revenue from 2004 (t=0) to 2008 $(t = 4)$ is approximated by :	
(l=4) is approximated by :	
$K =2t^{-} + 1.64t^{-} + 1.5t + 3.2$ (millions of	
dollars) When is the increase in revenue area ding up?	
When is it slowing down? When is the revenue	
increasing most rapidly?	
mercusing most rapidry :	

Find the derivative of each:	5. $p = -25x + 450$
1. $y = 20(5x+2)^3 \ln(x) + \frac{(5x+2)^4}{x}$	6. $y = -2t + 220$
2. $y = 8x(x^2+3)^3 \ln(5x-1) + \frac{5(x^2+3)^4}{5x+1}$	
3.	
$y = 4(2x+3)(x^2+3x)^3 e^{2x+1} + 2(x^2+3x)^4 e^{2x+1}$	
4. $y = \frac{2e^{3x}}{2x+5} + 3\ln(2x+5)e^{3x}$	
7. Either set of answers is considered correct.	8. a. Given the demand function:
a. $R(p) = 60,000 p - 240 p^2$ or	q = 120,000 - 2000 p
$R(q) = 250q00417q^2$	a. $R(p) = 120,000 - 2000 p^2$ or
b. $P(p) = 76800p - 240p^2 - 4,200,000$ or	$R(q) = 60q0005q^2$
$P(q) = 180q00417q^2$	b. $P(p) = 140,000 p - 2000 p^2 - 1,225,000$ or
c. Use b to maximize the profit:	$P(q) = 50q0005q^2 - 25000$
i. $q \approx 21600$ (21600 or 21582 are both	c. Use b to maximize the profit:
acceptable answers)	i. 50,000
ii. \$160	ii. \$35
iii. ~\$1,944,000	iii. \$1,225,000
Review with second derivatives:	Review with average cost:
5.3 # 65, 69, 73 (see back of book for answer)	11.
9. a. Concave up $0 \le x < 150$; concave down	$x \approx 1095$ items
$150 < x \le 400$	$C \approx 231.91$
b. More beneficial (rate increases more) when $y = 140,000$	
10 Yearly revenue from 2004 (t=0) to 2008	
(t=4) is approximated by :	
$R = -2t^3 + 1.64t^2 + 1.3t + 3.2$ (millions of	
dollars)	
Increase in revenue is speeding up between t=0	
and t=2.7 (from 2004 to middle of 2006)	
Increase in revenue is slowing down from	
t=2.8 to t=4 (from late 2006 to 2008). Revenue	
is increasing most rapidly (R' has a	
maximum) when t=2.73 (about October 2006).	