Math 146 Test 2 practice problems solutions

1. Write an equation of a line through points $(2,3)$ and $(5,1)$

You need to know the formulas: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ and $y-y_{1}=m\left(x-x_{1}\right)$
And you need to be able to simplify to a reasonable form:
$m=\frac{1-3}{5-2}=-\frac{2}{3}$ and $y-3=-\frac{2}{3}(x-2)$
Simplify in one of these ways
$y-3=-\frac{2}{3} x+\frac{4}{3}$
$3(y-3)=-\frac{2}{\not p}(x-2) \cdot \not p$
$3 y-9=-2(x-2)$
$y=-\frac{2}{3} x+\frac{4}{3}+3$
$3 y-9=-2 x+4$
$3 y+2 x=4+9$
$y=\frac{-2}{3} x+\frac{13}{3}$
$3 y+2 x=13$
2. a. Write an equation of a vertical line through $(1,3) \quad x=1$
b. Write an equation of a horizontal line through (1,3) $\quad y=3$
3. For both parts, solve first for y to get the slope of the given line:
$3 x+2 y=1$
$2 y=-3 x+1$
$\frac{2 y}{2}=\frac{-3 x}{2}+\frac{1}{2}$
$y=-\frac{3}{2} x+\frac{1}{2}$
so $m=-\frac{3}{2}$
Write an equation of a line parallel to $3 x+2 y=1$ through $(1,3)$
A parallel line will have slope $m=-\frac{3}{2}$ through point $(1,3)$
So the equation was $y-3=-\frac{3}{2}(x-1)$
and simplify:
$y-3=-\frac{3}{2}(x-1)$
$y-3=-\frac{3}{2}(x-1)$
$y-3=-\frac{3}{2} x+\frac{3}{2}$
$y=-\frac{3}{2} x+\frac{3}{2}+3$
or $\quad 2 \cdot(y-3)=\not 2 \cdot\left(-\frac{3}{\not 2}\right)(x-1)$
$2 y-6=-3 x+3$
$y=-\frac{3}{2} x+\frac{9}{2}$
$2 y+3 x=9$
b. Write an equation of a line perpendicular to $3 x+2 y=1$ through $(1,3)$

The slope perpendicular to $m=-\frac{3}{2}$ is $m=\frac{2}{3}$
The line with slope $m=\frac{2}{3}$ through $(1,3)$ is
$y-3=\frac{2}{3}(x-1)$
Simplify like this:
$y-3=\frac{2}{3}(x-1)$
$y-3=\frac{2}{3} x-\frac{2}{3}$
$y-3=\frac{2}{3}(x-1)$
$y=\frac{2}{3} x-\frac{2}{3}+3$
or $\quad 3 \cdot(y-3)=\not p \cdot \frac{2}{\not p}(x-1)$
$y=\frac{2}{3} x+\frac{7}{3}$
$3 y-9=2 x-2$
$-2 x+3 y=7$
4. Graph each of these functions or relations:
a. $3 x+2 y=4$
$2 y=-3 x+4$
$\frac{2 y}{2}=\frac{-3 x}{2}+\frac{4}{2}$
$y=\frac{-3}{2} x+2$
slope $-3 / 2, y$-intercept: 2

b. $y=\sqrt{-(x+2)}$
flip left-right, with center at $(-2,0)$

c. $y=-2|x-1|+3 \quad$ flip up-down, stretch twice as high, center at $(1,3)$

e. $y=-(x+3)^{3}-1$
flip up down, center at $(-3,-1)$

d. $y=\frac{1}{2}(x+2)^{2}-1$
flatten to height $1 / 2$, center at $(-2,-1)$

f. $(x-2)^{2}+(y+3)^{2}=25$ center at $(2,-3)$ radius 5

5. Graph the functions a. $y=\left\{\begin{array}{lll}2 x-3 & \text { if } & x \leq-2 \\ x-1 & \text { if } & -2<x<1 \\ & & \\ -2 x+1 & \text { if } & 1 \leq x\end{array}\right.$

Start with all of these graphs and some points

$$
\begin{aligned}
& (-2,2(-2)-3)=(-2,-7) \\
& (-2,-2-1)=(-2,-3) \\
& (1,1-1)=(1,0) \\
& (1,-2 \cdot 1+1)=(1,-1)
\end{aligned}
$$

and then erase the parts that aren't included:

5. Graph the functions b. $y=\left\{\begin{array}{llll}\sqrt{-x}+2 & \text { if } & x<0 & (0, \sqrt{0}+2)=(0,2) \\ 2 & \text { if } & 0<x<1 & (0,2) \\ & & & (1,2) \\ 2 x & \text { if } & 1 \leq x & (1,2 \cdot 1)=(1,2)\end{array}\right.$

Start with all of these graphs and some points

and then erase the parts that aren't included:

6. Write the equation of each of these functions or relations:

$$
y=2|x-1|-3
$$

$y=-2(x-3)^{2}+1$

$$
y=-\sqrt{x+2}+3
$$

$(x-1)^{2}+(y-2)^{2}=9$

Points $(6,0)$ and $(0,3) \quad m=\frac{0-3}{6-0}=\frac{-1}{2} \quad y$-intercept: 3. Equation $y=-\frac{1}{2} x+3$
7. Write the equation of each of these functions:

Find the equations of the line and the parabolas, and then work on putting them together

line through $(0,3)$ and $(-2,4)$
$m=\frac{4-3}{-2-0}=-\frac{1}{2}$
$y=-\frac{1}{2} x+3$
Parabola not stretched at center (1,0)
$y=(x-1)^{2}$
Line to left of $x=1$, parabola to the right
$y=\left\{\begin{array}{lll}-\frac{1}{2} x+3 & \text { if } & x<1 \\ (x-1)^{2} & \text { if } & x \geq 1\end{array}\right.$

Horizontal line at height 3

$$
y=3
$$

Parabola not shifted, but squashed down by $1 / 2$
$y=\frac{1}{2} x^{2}$
Line to the right of $x=2$, parabola to the left

$$
y=\left\{\begin{array}{lll}
\frac{1}{2} x^{2} & \text { if } & x \leq 2 \\
3 & \text { if } & 2<x
\end{array}\right.
$$

8. Put each of these equations in center-radius or vertex form by completing the square. Tell the center and radius or vertex and graph it.
a. $x^{2}+y^{2}-8 x-6 y+21=0$
$x^{2}-8 x+16+y^{2}-6 y+9=-21+16+9$
$(x-4)^{2}+(y-3)^{2}=4$
center (4,3), radius 2
b. $y=x^{2}-2 x+3$
$y+4=x^{2}-2 x+4+3$
$y+4=(x-2)^{2}+3$
$y=(x-2)^{2}-1$
vertex $(2,-1)$

9. vertex: $(-3,-4)$
axis of symmetry: $x=-3$
x-intercepts: $x=-5,-1$
y-intercept: $5 \quad\left(y=(0+3)^{2}-4=9-4=5\right)$

3: vertex: $(-3,2)$
axis of symmetry: $y=-3$
x-intercepts: -4,-2
y-intercept: -16 (plug $x=0$ into the equation)

13: vertex $(2,0)$
axis of symmetry: $x=2$
x-intercepts: $x=2$
solve $(x-2)^{2}=0$
y-intercept: $4 \quad$ plug in $x=0$

15: vertex $(-3,-4)$
axis of symmetry: $x=-3$
solve to get x-intercepts
$(x+3)^{2}-4=0$
$(x+3)^{2}=4$
$x+3= \pm 2$
$x=-3 \pm 2$
$x=-3+2,-3-2$
$x=-1,-5$
y-intercept: $(0+3)^{2}-4=9-4=5$
17. vertex: $(-1,-3)$
axis of symmetry: $x=-1$
solve to get x-intercepts:
$-\frac{1}{2}(x+1)^{2}-3=0$
$-2 \cdot\left(-\frac{1}{2}(x+1)^{2}\right)=-2 \cdot 3$
$(x+1)^{2}=-6$
$x+1= \pm \sqrt{-6}$
notice that the solutions will not be real numbers.
There are no x-intercepts
y-intercept: $-\frac{1}{2}(0+1)^{2}-3=-3 \frac{1}{2}=-\frac{7}{2}$
19. $y=x^{2}-2 x-3$ isn't factorable, so we will try to complete the square:

$$
\begin{aligned}
& y=x^{2}-2 x+3 \\
& y+1=x^{2}-2 x+1+3 \\
& y+1=(x-1)^{2}+3 \\
& y=(x-1)^{2}+2
\end{aligned}
$$

Vertex: $(1,2)$
Axis of symmetry: $x=1$
y-intercept: $0^{2}-2 \cdot 0+3=3$
If we try to solve

$$
x^{2}-2 x-3=0
$$

Using the quadratic formula (or using the completed square form), then we will get an imaginary part
(complex number, not real number) so there are no x intercepts.
21. $y=x^{2}-10 x+21$ is factorable:

$$
y=x^{2}-10 x+21=(x-3)(x-7)
$$

x-intercepts $(3,7)$
It's also pretty easy to complete the square (optional)
$y=x^{2}-10 x+21$
$y+25=x^{2}-10 x+25+21$
$y+25=(x-5)^{2}+21$
$y=(x-5)^{2}+21-25$
$y=(x-5)^{2}-4$
EITHER use the x-intercepts to find the axis of symmetry (half way between 3 and 7 is 5):
X = 5
And plug in to the equation to find the y-coordinate of the vertex:
$5^{2}-10 \cdot 5+21=25-50+21=-4$ so:
Vertex: $(5,-4)$
OR use the completed square form to get the vertex:
$(5,-4)$
And then the axis of symmetry: $x=5$
The y-intercept is $0^{2}-10 \cdot 0+21=21$

