Solutions to Sections 4.5 and 4.6 homework:
4.5 \# 21. $0.05(1.15)^{x}=5$
$(1.15)^{x}=\frac{5}{0.05}$ take care of any multiplication first (and simplify)
$(1.15)^{x}=100$
$\log (1.15)^{x}=\log 100$ take the log of both sides (base 10 works great here, because we have a 100 !) $x \log (1.15)=\log (100)$ use the multiplication-exponent logarithm rule
$x=\frac{\log (100)}{\log (1.15)}=\frac{2}{\log (1.15)}=32.950$ Divide to solve for x, and use your calculator.
23. $3 \cdot(2)^{x-2}+1=100$ This time there is an addition and a multiplication to take care of before using logarithms $3 \cdot(2)^{x-2}+1-1=100-1$
$\frac{3 \cdot(2)^{x-2}}{3}=\frac{99}{3}$
$(2)^{x-2}=33$
$\log \left(2^{x-2}\right)=\log (33)$
$(x-2) \log (2)=\log (33)$ Don't forget the parentheses when you bring down the exponent!
$\frac{(x-2) \log (2)}{\log (2)}=\frac{\log (33)}{\log (2)}$
$x-2=\frac{\log (33)}{\log (2)}$
$x=\frac{\log (33)}{\log (2)}+2=7.044$

$25.2(1.05)^{x}+3=10$	27. $5(1.015)^{x-1980}=8$
$2(1.05)^{x}=10-3$	$\frac{5(1.015)^{x-1980}}{5}=\frac{8}{5}$
$\frac{2(1.05)^{x}}{2}=\frac{7}{2}$	$\operatorname{log(1.015)^{x-1980}=\operatorname {log}(\frac {8}{5})}$
$(1.05)^{x}=\frac{7}{2}$	$\frac{(x-1980) \log (1.015)}{\log (1.015)}=\frac{\log (8 / 5)}{\log (1.015)}$
$\log (1.05)^{x}=\log \left(\frac{7}{2}\right)$	$x=\frac{\log (8 / 5)}{\log (1.015)}+1980 \approx 2011.568$
$x \log (1.05)=\log \left(\frac{7}{2}\right)$	
$x=\frac{\log \left(\frac{7}{2}\right)}{\log (1.05)} \approx 25.677$	

47. $\log _{6}(2 x+4)=2$ If there's only a log on one side, turn the equation into an exponent equation. $\begin{aligned} & 2 x+4=6^{2} \\ & 2 x+4=36 \\ & 2 x=32 \\ & x=16 \end{aligned}$	53. $\log (x+25)=\log (x+10)+\log 4$ Combine logs (one on each side). If there's a log on both sides, you can just remove the logs from both sides $\begin{aligned} & \log (x+25)=\log ((x+10) \cdot 4) \\ & x+25=4(x+10) \\ & x+25=4 x+40 \\ & -15=3 x \\ & -5=x \end{aligned}$
$\begin{aligned} & \text { 55. } \log (x-10)-\log (x-6)=\log 2 \\ & \log \left(\frac{x-10}{x-6}\right)=\log 2 \\ & \frac{x-10}{x-6}=2 \\ & x-10=2(x-6) \\ & x-10=2 x-12 \\ & 2=x \end{aligned}$	$\begin{aligned} & \text { 61. } \log _{2}\left(x^{2}-100\right)-\log _{2}(x+10)=1 \\ & \log _{2}\left(\frac{x^{2}-100}{x+10}\right)=1 \\ & \frac{x^{2}-100}{x+10}=2^{1} \\ & x^{2}-100=2(x+10) \\ & x^{2}-100=2 x+20 \\ & x^{2}-2 x-120=0 \\ & (x-12)(x+10)=0 \end{aligned}$ So, I decided to work this problem as if I had not noticed that $x^{2}-100=(x-10)(x+10)$. If you noticed that, then you would have simplified much earlier, and you would have gotten to an answer by a slightly different way. This solution makes it look like there are two solutions: $x=12$, and $x=-10$. However, $\log _{2}(10-10)=\log _{2} 0$ and you can't take a log of 0 (undefined), so the only real solution is $x=12$, and we have to throw out -10.
4.6 \# 11 for 1-c, you are just plugging in numbers for t and evaluating, so a. $A=500 e^{-0.032 \cdot 4}=500 e^{-0.128} \approx 439.9 \mathrm{~g}$. b. $A=500 e^{-0.032 .8}=500 e^{-0.256} \approx 387.1 \mathrm{~g}$. c. $A=500 e^{-0.032 \cdot 20}=500 e^{-0.64} \approx 263.6 \mathrm{~g}$.	For d, we are finding the half-life (when we have half as much). You can set it up this way: $250=500 e^{-0.032 \cdot t}$ Or you can set it up this way: $0.5 A_{0}=A_{0} e^{-0.032 t}$ After the first division step, you should get this from both methods: $0.5=e^{-0.032 t}$ $\ln (0.5)=\ln \left(e^{-0.032 t}\right)$ taking \ln of both sides is a little nicer than \log for this problem because $\ln (e)=1$: $\begin{aligned} & \ln (0.5)=-0.032 t \ln (e) \\ & \frac{\ln (0.5)}{-0.032}=\frac{-0.032 t}{-0.032} \\ & t=\frac{\ln (0.5)}{-0.032} \approx 21.7 \mathrm{yrs} \end{aligned}$

25. Compounded quarterly: $A=60,000\left(1+\frac{.05}{4}\right)^{4 \cdot 5}=60,000(1.0125)^{20} \approx \$ 76922.23$

Compounded continuously $A=60,000 e^{0.0475 \cdot 5}=60,000 e^{0.2375} \approx \$ 76084.50$
a. The higher interest rate compounded quarterly earns more money
b. The better plan earns $\$ 837.73$ more over 5 years.

$\begin{aligned} & \text { 26. } 80,000=60,000 e^{0.0475 t} \\ & \frac{80,000}{60,000}=\frac{60,000 e^{0.0475 t}}{60,000} \\ & \frac{4}{3}=e^{0.0475 t} \\ & \ln \left(\frac{4}{3}\right)=\ln \left(e^{0.0475 t}\right) \\ & \ln \left(\frac{4}{3}\right)=0.0475 t \ln (e) \\ & \frac{\ln \left(\frac{4}{3}\right)}{0.0475}=\frac{0.0475 t}{0.0475} \\ & t=\frac{\ln (4 / 3)}{.0475} \approx 6.06 \mathrm{yrs} \end{aligned}$ Note: $\ln (e)$ disappears because $\log _{e}(e)=1$	27. The general set up would look like this (it also works if you pick a number for P and double it for 2 P) $\begin{aligned} & 2 P=P e^{.025 t} \\ & \frac{2 P}{P}=\frac{P e^{.025 t}}{P} \\ & 2=e^{.025 t} \\ & \ln (2)=\ln \left(e^{.025 t}\right) \\ & \ln 2=.025 t \ln (e) \\ & \frac{\ln 2}{.025}=\frac{.025 t}{.025} \\ & t=\frac{\ln 2}{.025} \approx 27.7 \mathrm{yrs} \end{aligned}$	29. The general set up would look like this (it also works if you pick a number for P and triple it for 3 P) $\begin{aligned} & 3 P=P e^{.05 t} \\ & \frac{3 P}{P}=\frac{P e^{.05 t}}{P} \\ & 3=e^{.05 t} \\ & \ln (3)=\ln \left(e^{.05 t}\right) \\ & \ln 3=.05 t \ln (e) \\ & \frac{\ln 3}{.05}=\frac{.05 t}{.05} \\ & t=\frac{\ln 3}{.05} \approx 22.0 \mathrm{yrs} \end{aligned}$

