Solutions to Sections 4.5 and 4.6 homework:

4.5 # 21. $0.05(1.15)^x = 5$ $(1.15)^x = \frac{5}{0.05}$ take care of any multiplication first (and simplify) $(1.15)^x = 100$ $\log(1.15)^x = \log 100$ take the log of both sides (base 10 works great here, because we have a 100!) $x \log(1.15) = \log(100)$ use the multiplication-exponent logarithm rule $x = \frac{\log(100)}{\log(1.15)} = \frac{2}{\log(1.15)} = 32.950$ Divide to solve for x, and use your calculator. 23. $3 \cdot (2)^{x-2} + 1 = 100$ This time there is an addition and a multiplication to take care of before using logarithms $3 \cdot (2)^{x-2} + 1 = 100 - 1$ $\frac{3 \cdot (2)^{x-2}}{2} = \frac{99}{2}$

3 3

$$(2)^{x-2} = 33$$

 $\log(2^{x-2}) = \log(33)$
 $(x-2)\log(2) = \log(33)$ Don't forget the parentheses when you bring down the exponent!
 $\frac{(x-2)\log(2)}{\log(2)} = \frac{\log(33)}{\log(2)}$
 $x-2 = \frac{\log(33)}{\log(2)}$
 $x = \frac{\log(33)}{\log(2)} + 2 = 7.044$

$$\log(2)$$

2 = 2(1,05) × 2 10	r = 5(1, 0, 1, 5) r = 1980
25. $2(1.05)^{*} + 3 = 10$	$27.5(1.015)^{*} = 8$
$2(1.05)^{x} = 10 - 3$	$\frac{5(1.015)^{x-1980}}{5(1.015)^{x-1980}} = \frac{8}{5}$
$2(1.05)^{x}$ _ 7	5 5
2 2	$\log(1.015)^{x-1980} = \log\left(\frac{8}{5}\right)$
$(1.05)^x = \frac{7}{2}$	$(x-1980)\log(1.015) \log(8/5)$
$\log(1.05)^x = \log\left(\frac{7}{2}\right)$	$\frac{1}{\log(1.015)} = \frac{1}{\log(1.015)}$
(2)	$x = \frac{\log(8/5)}{\log(1.015)} + 1980 \approx 2011.568$
$x\log(1.05) = \log\left(\frac{7}{2}\right)$	log(1.015)
$\log\left(\frac{7}{2}\right)$ 25 677	
$x = \frac{1}{\log(1.05)} \approx 25.077$	

47. $\log_6(2x+4) = 2$	53. $\log(x+25) = \log(x+10) + \log 4$	
If there's only a log on one side, turn the equation into an	Combine logs (one on each side).	
exponent equation.	If there's a log on both sides, you can just remove the	
$2x + 4 = 6^2$	logs from both sides	
2x + 4 = 36	$\log(x+25) = \log((x+10)\cdot 4)$	
2x = 32	x + 25 = 4(x + 10)	
x = 16	x + 25 = 4x + 40	
	-15 = 3x	
	-5 = x	
55. $\log(x-10) - \log(x-6) = \log 2$	61. $\log_2(x^2 - 100) - \log_2(x + 10) = 1$	
$\log\left(\frac{x-10}{x-6}\right) = \log 2$	$\log_2\left(\frac{x^2 - 100}{x + 10}\right) = 1$	
$\frac{x-10}{x-6} = 2$	$\frac{x^2 - 100}{x^2 - 100} = 2^1$	
$r = \frac{10}{r} = 2(r - 6)$	x+10	
r = 10 - 2r = 12	$x^2 - 100 = 2(x + 10)$	
$\begin{array}{c} x & 10 - 2x & 12 \\ 2 = x \end{array}$	$x^2 - 100 = 2x + 20$	
	$x^2 - 2x - 120 = 0$	
	(x-12)(x+10) = 0	
	So, I decided to work this problem as if I had not noticed	
	that $x^2 - 100 = (x - 10)(x + 10)$. If you noticed that,	
	then you would have simplified much earlier, and you would have gotten to an answer by a slightly different way. This solution makes it look like there are two solutions: x=12, and x=-10. However	
	$\log_2(10-10) = \log_2 0$ and vou can't take a log of 0	
	(undefined), so the only real solution is x=12, and we	
	have to throw out -10.	
4.6 # 11 for 1-c, you are just plugging in numbers for t	For d, we are finding the half-life (when we have half as	
and evaluating, so	much). You can set it up this way:	
a. $A = 500e^{-0.0224} = 500e^{-0.126} \approx 439.9g.$	$250 = 500e^{-0.0327}$	
b. $A = 500e^{-0.032.8} = 500e^{-0.256} \approx 387.1g.$	Or you can set it up this way: $0.5.4 - 4.e^{-0.032t}$	
c. $A = 500e^{-0.032 \cdot 20} = 500e^{-0.64} \approx 263.6g.$	$0.5A_0 - A_0c$	
	methods:	
	$0.5 = e^{-0.032t}$	
	$\ln(0.5) = \ln(e^{-0.032t})$ taking ln of both sides is a little	
	nicer than log for this problem because $\ln(e) = 1$:	
	$\ln(0.5) = -0.032t \ln(e)$	
	$\ln(0.5) -0.032t$	
	$\frac{1}{-0.032} = \frac{1}{-0.032}$	
	$\ln(0.5)$ 21.7 π	
	$l = \frac{1}{-0.032} \approx 21.7 \text{ yrs}$	

25. Compounded quarterly: $A = 60,000 \left(1 + \frac{.05}{4}\right)^{4.5} = 60,000 (1.0125)^{20} \approx 76922.23

Compounded continuously $A = 60,000e^{0.0475 \cdot 5} = 60,000e^{0.2375} \approx 76084.50

a. The higher interest rate compounded quarterly earns more money

b. The better plan earns \$837.73 more over 5 years.

26. $80,000 = 60,000e^{0.0475t}$	27. The general set up would look like	29. The general set up would look like
$\frac{80,000}{60,000e^{0.0475t}}$	this (it also works if you pick a number for P and double it for 2P)	this (it also works if you pick a number for P and triple it for 3P)
60,000 60,000	$2P = Pe^{.025t}$	$3P = Pe^{.05t}$
$\frac{4}{3} = e^{0.0475t}$	$\frac{2P}{2} = \frac{Pe^{.025t}}{2}$	$\frac{3P}{2} = \frac{Pe^{.05t}}{2}$
	P P	P P
$\ln\left(\frac{4}{3}\right) = \ln\left(e^{0.0475t}\right)$	$2 = e^{.025t}$	$3 = e^{.05t}$
	$\ln(2) = \ln(e^{.025t})$	$\ln(3) = \ln(e^{.05t})$
$\ln\left(\frac{4}{3}\right) = 0.0475t\ln(e)$	$\ln 2 = .025t \ln(e)$	$\ln 3 = .05t \ln(e)$
(A)	$\frac{\ln 2}{2} - \frac{.025t}{.025t}$	$\frac{\ln 3}{2} - \frac{.05t}{.05t}$
$\ln\left(\frac{\tau}{3}\right) = 0.0475t$.025 .025	.05 .05
$\frac{(3)}{0.0475} = \frac{0.0475t}{0.0475}$	$t = \frac{\ln 2}{\cos 25} \approx 27.7 \ yrs$	$t = \frac{\ln 3}{25} \approx 22.0 \ yrs$
$t = \ln(4/3) \approx 6.06$ yrs	.025	.05
$l = \frac{1}{.0475} \approx 0.00 \text{ yrs}$		
Note: $\ln(e)$ disappears because		
$\log_e(e) = 1$		