Solutions to 2.3:
9. $\{(1,1),(1,-1),(0,0),(2,4),(2,-4)\}$
10. $\{(2,5),(3,7),(3,9),(5,11)\}$

Not a function because $(1,1)$ and $(1,-1)$
Also because $(2,4)$ and $(2,-4)$
Domain (all x's) $\{1,0,2\}$
Range (all y's) $\{1,-1,0,4,-4\}$
11.

Yes a function. Each x number (on the left) has only one arrow.
Domain $\{2,5,11,17,3\}$
Range \{1, 7, 20\}

Yes, a function:
all x's appear only once
Domain $\{0,-1,-2\}$
Range: $\{0,1,2\}$

Not a function because $(3,7)$ and $(3,9)$
Domain $\{1,2,5\}$
Range $\{5,7,9,11\}$
12.

Yes a function. Each x number (on the left) has only one arrow Domain: $\{1,2,3,5\}$
Range: $\{10,15,19,27\}$
14.

\boldsymbol{x}	\boldsymbol{y}
0	0
1	-1
2	-2

Yes, a function:
all x's appear only once
Domain $\{0,1,2\}$
Range $\{0,-1,-2\}$

15. Number of Visits to U.S. National

 Parks| Year (\boldsymbol{x}) | Number of Visits (\boldsymbol{y})
 (millions) |
| :---: | :---: |
| 2005 | 63.5 |
| 2006 | 60.4 |
| 2007 | 62.3 |
| 2008 | 61.2 |

Source: National Park Service.
Yes, it's a function, each year has only one number associated with it Domain: $\{2005,2006,2007,2008\}$
Range $\{63.5$ million, 60.4 million, 62.3 million, 61.2 million $\}$
17.

18.

19.

20.

21.

22.

I only assigned $17,19,20$, and 22 but these are so fast, I'll tell you answers to most of them
$17,18,19,21$ and 22 are functions. 19 and 20 are not functions because they fail the "vertical line test": there is an x-value that has two or more y-values. Examples of non-function relationships are:
19. has points $(6,1)$ and $(6,3) \quad$ 20. has points $(0,3)$ and $(0,-3)$

Arrows mean that the functions continue in the given directions, so domains and ranges are:
17. Domain $(-\infty, \infty)$, Range $(-\infty, \infty)$
18. Domain $(-\infty, \infty)$, Range: $(-\infty, 4]$
19. Domain $[3, \infty)$, Range $(-\infty, \infty)$
20. Domain $[-4,4]$, Range $[-3,3]$
21. Domain $(-\infty, \infty)$, Range $(-\infty, \infty)$
22. Domain [-2,2], Range [0,4]
25. $x=y^{6}$ includes the points $(1,1)$ and $(1,-1)$ so it is not a function

Domain $[0, \infty)$, Range $(-\infty, \infty)$
31. $y=\sqrt{x}$ This is a function, because \sqrt{x} is the name for just the positive square root.

Domain: $[0, \infty)$ because we are only allowing real inputs and outputs for these functions. That means we can only allow non-negative inputs (because negative inputs would give us imaginary outputs). Range $[0, \infty$)

These are the problems I meant to assign. They are from section 2.8 not 2.5:
Given functions f and g, find $(a)(f \circ g)(x)$ and its domain, and $(b)(g \circ f)(x)$ and its domain. See Examples 6 and 7.
63. $f(x)=-6 x+9, \quad g(x)=5 x+7$
64. $f(x)=8 x+12, \quad g(x)=3 x-1$
65. $f(x)=\sqrt{x}, \quad g(x)=x+3$
67. $f(x)=x^{3}, \quad g(x)=x^{2}+3 x-1$
69. $f(x)=\sqrt{x-1}, \quad g(x)=3 x$
71. $f(x)=\frac{2}{x}, \quad g(x)=x+1$
66. $f(x)=\sqrt{x}, \quad g(x)=x-1$
68. $f(x)=x+2, \quad g(x)=x^{4}+x^{2}-4$
70. $f(x)=\sqrt{x-2}, \quad g(x)=2 x$
72. $f(x)=\frac{4}{x}, \quad g(x)=x+4$
65. a. $f \circ g(x)=f(g(x))=f(x+3)=\sqrt{x+3}$

The numbers you are allowed to plug in (domain) are the ones where you're not taking the square root of a negative number, so you need to solve:
$x+3 \geq 0$ so $x \geq-3$ and the domain is $[-3, \infty)$
b. $g \circ f(x)=g(f(x))=g(\sqrt{x})=\sqrt{x}+3$

The domain is $[0, \infty)$
67. a. $f \circ g(x)=f(g(x))=f\left(x^{2}+3 x-1\right)=\left(x^{2}+3 x-1\right)^{3}$, which has domain $(-\infty, \infty)$
b. $g \circ f(x)=g(f(x))=g\left(x^{3}\right)=\left(x^{3}\right)^{2}+3 x^{3}-1$, which also has domain $(-\infty, \infty)$
71. a. $f \circ g(x)=f(g(x))=f(x+1)=\frac{2}{x+1}$

The domain (allowed numbers for x) is everything that does not have 0 in the denominator, so everywhere except $x=-1$. In interval notation, the domain is $(-\infty,-1) \cup(-1, \infty)$
$g \circ f(x)=g(f(x))=g\left(\frac{2}{x}\right)=\frac{2}{x}+1$
The domain (allowed numbers for x) is everything that does not have 0 in the denominator, so everywhere except $x=0$. In interval notation, the domain is $(-\infty, 0) \cup(0, \infty)$

