4.1 Inverse functions:

Note: practice function compositions first!
A useful example: $f(x)=\frac{1}{x}+2$ and $g(x)=\frac{1}{x-2}$
If we compose these two functions, and then we simplify, we get x
$f \circ g(x)=f\left(\frac{1}{x-2}\right)=\frac{1}{\left(\frac{1}{x-2}\right)}+2=1 \cdot \frac{x-2}{1}+2=x-2+2=x$
And it works in both orders:
$g \circ f(x)=g\left(\frac{1}{x}+2\right)=\frac{1}{\left(\frac{1}{x}+2\right)-2}=\frac{1}{\frac{1}{x}}=1 \cdot \frac{x}{1}=x$
And we can look at this with numbers:
If we start with $x=1$:
$f(1)=\frac{1}{1}+2=3$
Then plug that number into g : $g(3)=\frac{1}{3-2}=\frac{1}{1}=1$
If you start with 1 , you end with 1. That's what an inverse function is....

- pick any number and plug it into f
- find the output
- plug that number into g
- The number you get back should be the number you started with!

Another notation for this is $f^{-1}(x)=g(x)=\frac{1}{x-2}$

You will need 2 new skills:

- finding an inverse function
- relating graphs of functions and their inverses

Note that the x and y coordinates of these functions and just switched, and the functions are reflections across the diagonal line $y=x$

How to find the inverse of a function

Steps:

1. Write the function as $y=\ldots$
2. Swap x and y in the equation
3. Solve for y. (this is the inverse function!)

Example 1: Easy

$f(x)=3 x+5$
$y=3 x+5($ step 1$)$
$x=3 y+5($ step 2$)$
$x=3 y+5$
$3 y+5=x$
$3 y=x-5$
$y=\frac{1}{3} x-\frac{5}{3}$
so $f^{-1}(x)=\frac{1}{3} x-\frac{5}{3}($ step 3$)$

Example 2: Harder: exponents

$f(x)=2 x^{3}+1$
$y=2 x^{3}+1$
$x=2 y^{3}+1$
$2 y^{3}+1=x$
$2 y^{3}=x-1$ first undo/take care of things that are added or subtracted $y^{3}=\frac{x}{2}-\frac{1}{2}$ next undo/take care of things that are multiplied or divided $y=\left(\frac{x}{2}-\frac{1}{2}\right)^{1 / 3}$ Finally, take care of exponents. Remember these exponent rules: $\left(x^{a}\right)^{b}=x^{a b}$ and $x^{1 / n}=\sqrt[n]{x}$ so you can do this: $y^{3}=x \Rightarrow\left(y^{3}\right)^{1 / 3}=x^{1 / 3} \Rightarrow y^{3 .(1 / 3)}=x^{1 / 3} \Rightarrow y^{1}=\sqrt[3]{x}$
$f^{-1}(x)=\sqrt[3]{\frac{x}{2}-\frac{1}{2}}$ or $f^{-1}(x)=\left(\frac{x}{2}-\frac{1}{2}\right)^{1 / 3}$

Example 3: Harder, fractions:

$f(x)=\frac{2}{x}+4$
$y=\frac{2}{x}+4$
$x=\frac{2}{y}+4$
$y \cdot x=\left(\frac{2}{y}+4\right) y \quad$ You can multiply to get rid of the denominator. Be careful to multiply all terms by the same
thing!
$x y=\frac{2}{y} \cdot y+4 y$
$x y=2+4 y \quad$ Get all the y 's on one side, and factor out if there is more than one term
$x y-4 y=2$
$\frac{y(x-4)}{x-4}=\frac{2}{x-4}$
$y=\frac{2}{x-4}$
$f^{-1}(x)=\frac{2}{x-4}$

Example 4: fractions of the other sort

Starting from the other side:
$f(x)=\frac{3}{x-5}$
$y=\frac{3}{x-5}$
$x=\frac{3}{y-5}$
$(y-5) \cdot x=\frac{3}{y-5}(y-5)$
Multiply by the whole denominator to get rid of it (add parentheses)
$x(y-5)=3$
$x y-5 x=3$
$x y=3+5 x$
$\frac{x y}{x}=\frac{3}{x}+\frac{5 x}{x}$
$y=\frac{3}{x}+5$
$f^{-1}(x)=\frac{3}{x}+5$
Then divide or multiply. Divide all of the terms.

Remember that picture? If you ever need an inverse function, all you need to do is reflect across the diagonal line $y=x$. I suggest plotting a few specific points to help you out.

Example:
step 1: plot some points

step 2: plot the switched points and connect for a reflected inverse function.

$$
\begin{aligned}
& (-2,0) \\
& (0,1.2) \\
& (2,2) \\
& (4,2.5)
\end{aligned}
$$

Homework solutions:
41. $f(x)=2 x+4 \quad g(x)=\frac{1}{2} x-2$

$$
\begin{aligned}
f \circ g(x)=f\left(\frac{1}{2} x-2\right) & =2\left(\frac{1}{2} x-2\right)+4 \\
& =2 \cdot \frac{1}{2} x-2 \cdot 2+4 \\
& =x-4+4=x
\end{aligned}
$$

$g \circ f(x)=g(2 x+4)=\frac{1}{2}(2 x+4)-2$

$$
\begin{aligned}
& =\frac{1}{2} \cdot 2 x+\frac{1}{2} \cdot 4-2 \\
& =x+2-2=x
\end{aligned}
$$

59a. $y=3 x-4$
$x=3 y-4$
$3 y-4=x$
$3 y=x+4$
$\frac{3 y}{3}=\frac{x}{3}+\frac{4}{3}$
$f^{-1}(x)=\frac{x}{3}+\frac{4}{3}$
61a. $f(x)=x^{3}+1$
$y=x^{3}+1$
$x=y^{3}+1$
$y^{3}+1=x$
$y^{3}=x-1$
$\left(y^{3}\right)^{1 / 3}=(x-1)^{1 / 3}$
$y=(x-1)^{1 / 3}$
$f^{-1}(x)=(x-1)^{1 / 3}$ or $f^{-1}(x)=\sqrt[3]{x-1}$

69a. $f(x)=\frac{1}{x-3}$
$y=\frac{1}{x-3}$
$x=\frac{1}{y-3}$
$(y-3) x=\frac{1}{y-3}(y-3)$
$x y-3 x=1$
$x y=3 x+1$
$\frac{x y}{x}=\frac{3 x}{x}+\frac{1}{x}$
$y=3+\frac{1}{x}$
$f^{-1}=3+\frac{1}{x}$
77.

79.

