Test 1 make-up practice solutions
Test 1\# 1: an equation with fractions, such as: $\frac{1}{3} x-\frac{1}{5}(x+4)=2$
First use the distributive law:
$\frac{1}{3} x-\frac{1}{5} x-\frac{4}{5}=2$
Then eliminate the fractions:
$\frac{3 \cdot 5}{1} \cdot\left(\frac{1}{3} x-\frac{1}{5} x-\frac{4}{5}\right)=\frac{3 \cdot 5}{1} \cdot 2$
$\frac{\not p \cdot 5}{1} \cdot \frac{1}{\not p} x-\frac{3 \cdot \not p}{1} \cdot \frac{1}{\not p} x-\frac{3 \cdot \not p}{1} \cdot \frac{4}{\not p}=\frac{3 \cdot 5}{1} \cdot 2$
$5 x-3 x-12=30$
Then solve for x :
$2 x=30+12$
$2 x=42$
$x=21$
Test 1 \# 3: an equation with rational expressions $\frac{x+3}{x^{2}-3 x}+\frac{x-4}{x^{2}+3 x}=\frac{2 x+5}{x^{2}-9}$
First factor the denominators:
$\frac{x+3}{x(x-3)}+\frac{x-4}{x(x+3)}=\frac{2 x+5}{(x+3)(x-3)}$
Then eliminate the denominators:
$\frac{x(x-3)(x+3)}{1} \cdot\left(\frac{x+3}{x(x-3)}+\frac{x-4}{x(x+3)}\right)=\frac{x(x-3)(x+3)}{1} \cdot \frac{2 x+5}{(x+3)(x-3)}$
$\frac{\not x(x-3)(x+3)}{1} \cdot \frac{x+3}{\not 2(x-3)}+\frac{\not x(x-3)(x+3)}{1} \cdot \frac{x-4}{\not x(x+3)}=\frac{x(x-3)(x+3)}{1} \cdot \frac{2 x+5}{(x+3)(x-3)}$
$(x+3)(x+3)+(x-3)(x-4)=x(2 x+5)$
(Don't forget parentheses on the numerators!)
Distribute to multiply out and combine like terms:
$x^{2}+6 x+9+x^{2}-7 x+12=2 x^{2}+5 x$
$2 x^{2}-x+21=2 x^{2}+5 x$
This will be either a linear equation (x) or a quadratic equation (x^{2}). Solve for x :
$-x+21=5 x$
$21=6 x$
$x=\frac{21}{6}=\frac{7}{2}$

Test 1 \# 7: an equation that can be solved using the quadratic formula, and for which you should leave the answer in simplified square root form: $x^{2}-4 x+22=0$
Identify a, b, and c and plug into the quadratic formula:
$a=1, b=-4, c=22$:
$x=\frac{+4 \pm \sqrt{(-4)^{2}-4 \cdot 1 \cdot 22}}{2 \cdot 1}$
First simplify inside the square root:
$x=\frac{4 \pm \sqrt{16-88}}{2}=\frac{4 \pm \sqrt{-72}}{2}$
Then look for perfect square factors of the number in the square root, and simplify the square root:
$x=\frac{4 \pm \sqrt{-1 \cdot 9 \cdot 4 \cdot 2}}{2}=\frac{4 \pm i \cdot 3 \cdot 2 \sqrt{2}}{2}=\frac{4 \pm 6 i \sqrt{2}}{2}$
Factor out constants from the numerator (if possible), and cancel with the denominator (if possible)
$x=\frac{\not 2(2 \pm 3 i \sqrt{2})}{\not 2}=2 \pm 3 i \sqrt{2}$
Test 1 \# \# 13/17 (last problem): Solve a rational equation with decimals where the answer should be given as a decimal approximation: $\frac{x^{2}}{(0.75-x)(.60-x)}=0.10$

First simplify to get rid of the denominators:
$\frac{(0.75-x)(.60-x)}{1} \cdot \frac{x^{2}}{(0.75-x)(.60-x)}=0.10 \cdot \frac{(0.75-x)(.60-x)}{1}$
$x^{2}=0.10(0.75-x)(.60-x)$
Then multiply out: group 2 and do the multiplication with them, and then multiply by the third factor:
$x^{2}=0.10((0.75-x)(.60-x))$
$x^{2}=0.10 \cdot\left(.75 \cdot .60-.75 x-.60 x+x^{2}\right)$
$x^{2}=0.10 \cdot\left(0.45-1.35 x+x^{2}\right)$
$x^{2}=0.10 \cdot 0.45-0.10 \cdot 1.35 x+0.10 \cdot x^{2}$
$x^{2}=0.045-0.135 x+0.10 x^{2}$
Get all of the terms on the same side of the " $=$ " sign:
$x^{2}-0.10 x^{2}+0.135 x-0.045=0$
$0.90 x^{2}+0.135 x-0.045$
Plug in to the quadratic formula:
$x=\frac{-0.135 \pm \sqrt{0.135^{2}-4 \cdot 0.90 \cdot(-0.045)}}{2(0.90)}$

Note: write this line down to get the most getting partial credit if your answer is wrong.

Plug (carefully) into your calculator to get:
$x=.160849 \ldots,-.310849 \ldots$.... and round to 2 significant figures (because the problem is given in decimals to 2 significant figures). You can discard the negative answer because this comes from a problem where only positive answers are allowed: $x=0.16$

