1) A block of aluminum occupies a volume of 15.0 mL and weighs 40.5 g . What is its density?
2) Mercury metal is poured into a graduated cylinder that holds exactly 22.5 mL . The mercury used to fill the cylinder weighs 306.0 g . From this information, calculate the density of mercury.

2b) What will be the mass of 18 mL of mercury?
2c) What will be the volume of 45 g of mercury?
3) What is the mass of the ethyl alcohol that exactly fills a 200.0 mL container? The density of ethyl alcohol is $0.789 \mathrm{~g} / \mathrm{mL}$

An ideal gas satisfies the equation $P V=n R T$, where P is the pressure in atm, V is the volume in liters, T is the temperature in degrees kelvin, n is the number of moles, and R is a constant (Google "ideal gas law" to look it up).
4. a. Solve the ideal gas law for P
b. Solve for T
5. Imagine that you are warming a sealed flexible Balloon (n and P constant) from 300 K to 350 K (must be in Kelvin to work with this formula). The initial volume of the balloon is 0.32 L , what is the new volume of the balloon?
6. In a sealed box with constant volume, when is the temperature is 285 K , the pressure is 1 atm . What is the pressure when the temperature is raised to 350 K
7. In calculating equilibrium in a chemical reaction, several givens are substituted into the formula
$K_{c}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$ to get $54.3=\frac{(2 x)^{2}}{(0.100-x)(0.250-x)}$. Solve for x .

Answers: 1. $2.7 \frac{\mathrm{~g}}{\mathrm{ml}}$
2 a. $13.6 \frac{\mathrm{~g}}{\mathrm{ml}}$
b. $244.8 g$
c. $3.3 m l$
3. 157.8 g
4. a. $P=\frac{n R T}{V}$
b. $T=\frac{P V}{n R}$
5. 0.37 L
6. 1.23 atm .
7. $x=0.282$ and $x=.096$

