## Math 146 Chapter 1 test practice

Solve each equation:

1. $\frac{1}{3} x+5=\frac{1}{4}(x+2)$
2. $2(3 x-1)-(x+4)=x-3$
3. $0.2 x+3.1=0.4(3 x+8.2)$
(round to 2 decimal places)
4. Solve for $\mathrm{t}: V=a^{2} r t+\frac{b t}{2}+n \quad$ 5. Solve for $\mathrm{k}: D=(n-k) r t$
5. Solve by factoring: $2 x^{2}-5 x-12=0$
6. Solve and leave the answer in exact simplified form (square roots, fractions, but no decimals)
a. $2 x^{2}-2 x+3=0$
b. $x^{2}+4 x-8=0$

Factor each expression:
8. a. $x^{2}+4 x$
b. $x^{3}-10 x^{2}+24 x$
c. $6 x^{2}+11 x+4$

Solve each equation:
9. $\frac{x+1}{x^{2}-9}-\frac{x+3}{x^{2}+5 x+6}=\frac{4}{x^{2}-x-6}$
10. $(x+3)^{2 / 3}=36$

Solve each inequality. Tell the answer using interval notation.
11. $2 x+5 \leq 4 x+13$
12. $x^{2}+4 x>21$

Solve the absolute equations and inequalities. Give inequality answers in interval notation.
13. $|2 x+5|=4$
14. $\left|\frac{x+3}{2}\right| \leq 4$
15. $|4(x-7)| \geq 2$

Solve the following application problems:
16. a. A cube of ironwood has a volume of 22.8 mL , and a weight of 15.0 g . What is its density in $\mathrm{g} / \mathrm{mL}$ ? Round your answer to 3 significant figures
b. A carved figure made of ironwood has weight 8.5 g . Find the volume of the figure.
17. An ideal gas satisfies the equation $\mathrm{PV}=\mathrm{nRT}$, where P is the pressure in $\mathrm{atm}, \mathrm{V}$ is the volume in Liters, T is the temperature in degrees kelvin, n is the number of moles, and R is a constant.
a. Solve for the constant R.
b. Air inside a 30 L . scuba canister is compressed to a pressure of 200 atmospheres. If the gas is released container with volume 150 L ., what will the pressure of the gas be? (assume temperature does not change). c. CaCO 3 decomposes at $\sim 12200 \mathrm{~K}$ to form CO 2 gas and CaO . If 25.0 L of CO 2 are collected at 12200 K , what will the volume of this gas be after it cools to 500 K ?
18. A sample containing 0.63 M CO 2 and 0.57 M H 2 is allowed to equilibrate at 700 K . The final amount $x$ of $\mathrm{H}_{2} \mathrm{O}$ and CO is given by $\frac{x^{2}}{(0.57-x)(.63-x)}=0.11$. Solve for $x$.

Answers:

1. -54
2. 3/4
3. -0.18
4.: $\frac{2 V-2 n}{2 a^{2} r+b}=t$
4. $k=n-\frac{D}{r t}$
5. $2 x^{2}-5 x-12=0 \quad(2 x+3)(x-4)=0 \quad \Rightarrow \quad x=4,-3 / 2$
6. a. $x=\frac{1 \pm i \sqrt{5}}{2} \quad$ alternate form: $x=\frac{1}{2} \pm \frac{i \sqrt{5}}{2}$
b. $x=-2 \pm 2 \sqrt{3}$
7. a. $x^{2}+4 x=x(x+4)$
b. $x^{3}-10 x^{2}+24 x=x(x-6)(x-4)$
c. $6 x^{2}+11 x+4=(3 x+4)(2 x+1)$
8. -1
9. 213 and -219 (for technical reasons, 213 without the alternate solution -219 would also be accepted as the correct answer)
10. $[-4, \infty)$
11. $(-\infty,-7) \cup(3, \infty) \quad 13 .-1 / 2,-9 / 2$
12. $[-11,5]$
13. $(-\infty, 13 / 2] \cup[15 / 2, \infty)$
14. a. $0.658 \mathrm{~g} / \mathrm{mL}$
b. 12.9 mL
15. b. $R=\frac{P V}{n T} \quad$ b. $\frac{(200 \mathrm{~atm})(30 L)}{n T}=\frac{P(150 L)}{n T} \Rightarrow P=40 \mathrm{~atm}$
c. $\frac{P(25 L)}{n 12200 K}=\frac{P V}{n 500 K}=>V=1.02 L$
16. 

$\frac{x^{2}}{(0.57-x)(.63-x)}=0.11 \Rightarrow x^{2}=.11(0.57-x)(.63-x) \quad \Rightarrow \quad x^{2}=.11 x^{2}-0.132 x+.039501$
$\Rightarrow 0.89 x^{2}+0.132 x-0.039501=0 \quad \Rightarrow \quad x=\frac{-.132 \pm \sqrt{.132^{2}-4(.89)(-0.039501)}}{2 \cdot .89}$
$x \approx .15$

