2.6 \# 21, 23, 27, 29, 31, 51

In 21-31 Purple vertical lines show where to switch from one graph to the other.
21. $f(x)= \begin{cases}x-1 & \text { if } x \leq 3 \\ 2 & \text { if } x>3\end{cases}$
dashed lines show the steps: red is the line $y=2$, green is $y=x-1$. The black solid line is the final graph

23. $f(x)= \begin{cases}4-x & \text { if } x<2 \\ 1+2 x & \text { if } x \geq 2\end{cases}$
dashed lines show the steps:
green is the line $\mathrm{y}=4-\mathrm{x}$, red is $\mathrm{y}=1+2 \mathrm{x}$.
The black solid line is the final graph

29. $f(x)= \begin{cases}-\frac{1}{2} x^{2}+2 & \text { if } x \leq 2 \\ \frac{1}{2} x & \text { if } x>2\end{cases}$

Dashed lines show the steps:
green is the parabola $y=-(1 / 2) x^{\wedge} 2+2$, red is $y=-(1 / 2) x$
The black solid line is the final graph

31. $f(x)= \begin{cases}2 x & \text { if }-5 \leq x<-1 \\ -2 & \text { if }-1 \leq x<0 \\ x^{2}-2 & \text { if } 0 \leq x \leq 2\end{cases}$

Dashed lines show the steps:
green is the line $y=2 x$, red is $y=-2$, blue is $\mathrm{y}=\mathrm{x}^{\wedge} 2-2$
The black solid line is the final graph

51. Pickup Truck Market Share The light vehicle market share (in percent) in the United States for pickup trucks is shown in the graph. Let $x=0$ represent $1995, x=4$ represent 1999, and so on.
(a) Use the points on the graph to write equations for the line segments in the intervals $[0,4]$ and $(4,8]$.
(b) Define this graph as a piecewise-defined function f.

Pickup Truck Market Share

Source: Bureau of Transportation Statistics.

To find the equation of a line between $(0,42.8)$ and $(4,39.2)$, calculate:
$m=\frac{39.2-42.8}{4-0}=\frac{-3.6}{4}=-0.9$
$y-42.8=-0.9(x-0)$
$y=-0.9+42.8$
To find the equation of a line between $(4,39.2)$ and $(8,32.7)$, calculate:

$$
\begin{aligned}
& m=\frac{32.7-39.2}{8-4}=\frac{-6.5}{4}=-1.625 \\
& y-32.7=-1.625(x-8) \\
& y-32.7=-1.625 x+13 \\
& y=-1.625 x+45.7
\end{aligned}
$$

Put the equations together like this:
$y=\left\{\begin{array}{lll}-0.9 x+42.8 & \text { if } & 0 \leq x \leq 4 \\ -1.625 x+45.7 & \text { if } & 4<x \leq 8\end{array}\right.$
Because the two equations have the same value when $x=4$, it's OK if you have <4 for the first one and $4 \leq x$ on the second one.
2.7 \# 79, 81, 83
79. This graph is an $\mathrm{y}=|\mathrm{x}|$ equation that is flipped upside down, is not stretched, and has the center moved to
$(-1,4)$, so the equation is $y=-|x+1|+4$
81. This graph is a shifted square root graph. It is not stretched or reflected. Its center is at $(1,-3)$, so the equation is $y=\sqrt{x-1}-3$
83. This graph is a square root that is shifted and stretched. If you start at the center $(-4,-4)$ and go right 1 , the graph goes up by 2 , so it is stretched by 2 . This means the equation is: $y=2 \sqrt{x+4}-4$

