2.5 \# 5: $\begin{aligned} & y-3=-2(x-1) \\ & y-3=-2 x+2 \\ & y=-2 x+2+3 \\ & y=-2 x+5 \end{aligned}$ OR $2 x+y=5$	7. $\begin{aligned} & y-4=\frac{-3}{2}(x-(-5)) \\ & y-4=\frac{-3}{2}(x+5) \\ & y-4=\frac{-3 x}{2}-\frac{15}{2} \\ & y=\frac{-3 x}{2}-\frac{15}{2}+\frac{8}{2} \\ & y=\frac{-3 x}{2}-\frac{7}{2} \end{aligned}$ OR $\frac{3 x}{2}+y=-\frac{7}{2}$ OR $\begin{aligned} & \frac{\not 2}{1} \cdot \frac{3 x}{\not 2}+\frac{2}{1} \cdot y=-\frac{7}{\not 2} \cdot \frac{\not 2}{1} \\ & 3 x+2 y=-7 \end{aligned}$	9. Undefined slope means a vertical line. In a vertical line, all of the x coordinates are the same, so all of the x-coordinates are -8 . The equation is: $x=-8$ (this is equation is in general form, and can't be written in slope-intercept form)
11. $\begin{aligned} & y-(-8)=0(x-5) \\ & y+8=0 \\ & y=-8 \end{aligned}$	15. x-intercept 3 is the point $(3,0)$ y-intercept -2 is the point $(0,-2)$ $\begin{aligned} & m=\frac{0-(-2)}{3-0}=\frac{2}{3} \\ & y=\frac{2}{3} x-2 \end{aligned}$ (using slope-intercept form) Alternate forms for the answer are: $\begin{aligned} & y-(-2)=\frac{2}{3}(x-0) \\ & y+2=\frac{2}{3} x \\ & \frac{2}{3} x+y=-2 \\ & \frac{\not p}{1} \cdot \frac{2}{\not p} x+\frac{3}{1} \cdot y=-2 \cdot \frac{3}{1} \\ & 2 x+3 y=-6 \end{aligned}$	17. Vertical lines all have the same x-coordinate. To go through point ($-6,4$) they must all have x-coordinate -6 , so the equation is $x=-6$ 19. Horizontal lines all have the same y-coordinate. To go through the point ($-7,4$), they must all have y-coordinate 4 , so the line equation is $y=4$ Horizontal lines have a slope of 0 , so you can also find the equation by doing $\begin{aligned} & y-4=0(x-(-7)) \\ & y-4=0 \\ & y=4 \end{aligned}$

39. The line has y-intercept 1 . You can see that if you go over to the right 1, the line goes down by 2 , so the slope is -2 : $y=-2 x+1$	41. This line has y-intercept 2. It's hard to see how much the line goes down when you go to the right by 1 , but if you go to the right by 3 , then the line goes down 1 , so $m=\frac{\text { rise }}{r u n}=\frac{-1}{3}$ You could also find the slope from the two points $(0,2)$ and $(3,1)$ The equation of the line is $y=\frac{-1}{3} x+2$
45. The line $x+3 y=5$ can be put in the form: $\begin{aligned} & \frac{3 y}{3}=\frac{-x}{3}+\frac{5}{3} \\ & y=\frac{-1}{3} x+\frac{5}{3} \end{aligned}$ So its slope is $\frac{-1}{3}$ A parallel line will have the same slope, so the parallel line equation is $\begin{aligned} & y-4=\frac{-1}{3}(x-(-1)) \\ & y-4=\frac{-1}{3}(x+1) \\ & y-4=\frac{-1}{3} x-\frac{1}{3} \\ & y=\frac{-1}{3} x-\frac{1}{3}+4 \\ & y=\frac{-1}{3} x-\frac{1}{3}+\frac{12}{3} \\ & y=\frac{-1}{3} x+\frac{11}{3} \end{aligned}$ OR $\begin{aligned} & \frac{-1}{3} x+y=\frac{11}{3} \\ & \frac{\not p}{1} \cdot \frac{-1}{\not p} x+\frac{3}{1} \cdot y=\frac{\not p}{1} \cdot \frac{11}{\not p} \\ & -x+3 y=11 \end{aligned}$	47., The line $3 x+5 y=1$ can be put in the form: $5 y=-3 x+1$ $\begin{aligned} & \frac{\not p y}{\not f}=\frac{-3 x}{5}+\frac{1}{5} \\ & y=\frac{-3 x}{5}+\frac{1}{5} \end{aligned}$ So its slope is $\frac{-3}{5}$ If we change the sign and take the reciprocal we get a slope of $\frac{5}{3}$, which is the slope of the perpendicular line: $\begin{aligned} & y-6=\frac{5}{3}(x-1) \\ & y-6=\frac{5}{3} x-\frac{5}{3} \\ & y=\frac{5}{3} x-\frac{5}{3}+6 \\ & y=\frac{5}{3} x-\frac{5}{3}+\frac{18}{3} \\ & y=\frac{5}{3} x+\frac{13}{3} \end{aligned}$ OR $\begin{aligned} & \frac{-5}{3} x+y=\frac{13}{3} \\ & \frac{\not p}{1} \cdot \frac{-5}{\not p} x+\frac{3}{1} \cdot y=\frac{\not p}{1} \cdot \frac{13}{\not b} \\ & -5 x+3 y=13 \end{aligned}$

