\qquad
You will get some points on the test for knowing these formulas, and being able to fill out this form correctly. After everyone has completed their sheet, you will get a correctly filled in form (see next page) to use on the test.

Logarithm formulas

Complete each formula:
(2 pts) $\log _{b} n+\log _{b} m=$
(2 pts) $\log _{b} n-\log _{b} m=$
(2 pts) $\log _{b} n^{k}=$
(3 pts) Write $\log _{b} n=m$ as an equivalent exponential equation:

Understanding interest rate equations

The interest rate equations are:
$A=P\left(1+\frac{r}{n}\right)^{n t}$ for interest compounded n times per year and
$A=P \mathrm{e}^{r t}$ for interest compounded continuously.
Tell what each variable represents:
(1 pt) r is
(1 pt) t is
(1 pt) P is
(1 pt) A is
The quadratic formula.
(3 pts) If $a x^{2}+b x+c=0$ then $x=$
The slope of a line through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
(2 pts) $m=$
The point-slope form of a line that has slope m and includes the point $\left(x_{1}, y_{1}\right)$ is
(2 pts)

Math 146 formula sheet, completed version:

Logarithm formulas

$\log _{b} n+\log _{b} m=\log _{b}(n \cdot m)$
$\log _{b} n-\log _{b} m=\log _{b}\left(\frac{n}{m}\right)$
$\log _{b} n^{k}=k \log _{b} n$
$\log _{b} n=m$ is equivalent to $b^{m}=n$
$\log _{b}(n)=\frac{\log n}{\log b} \quad$ and $\log _{b}(n)=\frac{\ln (n)}{\ln (b)}$

Understanding interest rate equations

The interest rate equations are:
$A=P\left(1+\frac{r}{n}\right)^{n t}$ for interest compounded n times per year and
$A=P \mathrm{e}^{r t}$ for interest compounded continuously.
Tell what each variable represents:
r is the yearly interest rate (as a decimal)
t is the time as a number of years
P is the principal amount invested, which is also called the present value.
A is the amount at the end of t years.
The quadratic formula.
If $a x^{2}+b x+c=0$ then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
The slope of a line through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
The point-slope form of a line that has slope m and includes the point $\left(x_{1}, y_{1}\right)$ is
$y-y_{1}=m\left(x-x_{1}\right)$

