Practice problems from Chapter 4 (about half of the final exam, maybe a little more):

1. For each of these relations, tell whether it is a function or not:
a. $\{(2,3),(2,4),(3,5)\}$
b. $\{(2,3),(3,3),(4,3)\}$
(is y a function of $\mathrm{x}: \mathrm{x}$ is the input, y is the output)
c. $y=x^{2}$
d. $x=y^{2}$
e. $x=y^{3}$
f.

g.

2. For each of these pairs of functions, find $f \circ g(x)$. Simplify, and use the simplified form to tell whether the functions are inverses or not:
a. $f(x)=3 x+5$
$g(x)=\frac{1}{3} x-5$
b. $f(x)=\frac{1}{x-2}$
$g(x)=\frac{1}{x}+2$
3. Find $f \circ g(x)$ for $\quad f(x)=x^{2}+3 x+1 \quad g(x)=x-2$
4. Find the inverse function for each of these functions:
a. $f(x)=3 x+4$
b. $f(x)=2 x^{3}+1$
c. $f(x)=3 \cdot 2^{x}$
5. If the graph of $y=f(x)$ given below, graph:
a. $y=f^{-1}(x)$
b. $y=f(x)+1$
c. $y=f(x+2)$
(show exactly what happens to the two points labelled)

The interest rate equations are:
$A=P\left(1+\frac{r}{n}\right)^{n t}$ for interest compounded n times per year and
$A=P \mathrm{e}^{r t}$ for interest compounded continuously.
6. If an amount of $\$ 3,000$ is invested at an annual interest rate of 2.8% compounded quarterly, what is the value of the investment after 5 years? (Round to the nearest penny)
7. If the same amount $(\$ 3,000)$ is invested at the same annual interest rate (2.8%), but the interest is compounded continuously, what is the value of the investment after 5 years? (Round to the nearest penny)
8. How much money must be invested at an annual interest rate of 2.8%, compounded quarterly, so that the investment will yield $\$ 6000$ in 8 years? (Round to the nearest penny)
9. How much money must be invested at an annual interest rate of 2.8%, compounded continuously, so that the investment will yield $\$ 6000$ in 8 years? (Round to the nearest penny)
10. If an amount of money (can you pick any amount for this problem?) is invested at an annual interest rate of 2.8%, compounded quarterly, how long will it take for the investment to double in value? (Round to the nearest hundredth of a year)
11. If an amount of money (yes-you can pick any amount for this problem!) is invested at an annual interest rate of 2.8%, compounded continuously, how long will it take for the investment to double in value? (Round to the nearest hundredth of a year)
12. Plutonium-241 decays according to the function $A(t)=A_{0} e^{-0.053 t}$. How long will it take some amount of Plutonium (it doesn't matter how much!) to decay to half of its amount? (Round to the nearest tenth of a year)
13. Expand these logarithmic expressions:
a. $\log _{3}\left(\frac{3 \sqrt{x}}{y^{2}}\right)$
b. $\log \left(\frac{x}{\sqrt{y z}}\right)$
c. $\ln (3 \sqrt[4]{x y})$
14. Combine these logarithmic expressions:
a. $\log x+2 \log y-3 \log z-\log w$
b. $\ln (3)+2 \ln x-\ln (x+1)$
c. $\log _{2} x+2 \log _{2}(x+1)$
15. Solve the exponential equations:
a. $2^{(x-1)}=8$
b. $3\left(2^{x+1}\right)=12$
c. $5(1.2)^{x-4}=14$
d. $4 \cdot 2^{3 x}=18$
(Round to 4 decimal places)
16. Solve the logarithmic equations:
$\begin{array}{ll}\text { a. } \log _{3}(2 x+1)-\log _{3}(x-3)=2 & \text { b. } \ln (x+1)+\ln (x+2)-\ln (4)=\ln (3)\end{array}$
c. $\log _{2}(2 x+5)-\log _{2}(x-1)=3$
d. $\log (x+1)+\log (x-2)=1$
e. $\log (x+1)-\log (x-2)=\log (4)$
(Round to 4 decimal places)

Review practice problems from chapters 1-3 (about half of the final exam, maybe a little less)
Math 146 Final Exam review items from chapters 1-3
Some problems like these from Chapter 1 will be on the final exam:
17. Solve by factoring: $2 x^{2}-5 x-12=0$
18. Solve and leave the answer in exact simplified form (square roots, fractions, but no decimals)
a. $2 x^{2}-2 x+3=0$
b. $x^{2}+4 x-8=0$
19. Factor each expression:
a. $x^{2}+4 x$
b. $x^{3}-10 x^{2}+24 x$
20. Solve each equation:
a. $\frac{x+1}{x^{2}-9}-\frac{x+3}{x^{2}+5 x+6}=\frac{4}{x^{2}-x-6}$
b. $(x+3)^{2 / 3}=36$
21. An ideal gas satisfies the equation $P V=n R T$, where P is the pressure in atm, V is the volume in Liters, T is the temperature in degrees kelvin, n is the number of moles, and R is a constant.
a. Solve for the constant R.
b. Given $\mathrm{n}=2.5 \mathrm{~mol}$ of a gas, when the temperature is 275 K and the pressure is .95 atm , then the volume is 59 L . If the air pressure stays the same (. 95 atm), and the amount of gas stays the same (2.5 mol) and the temperature increases to 310 K , what is the new volume? (Round to the nearest tenth of a liter)

There will be some problems like these from Chapter 2:
22. Graph the functions a. $y=\left\{\begin{array}{lll}2 x+3 & \text { if } & x \leq-2 \\ x^{2} & \text { if } & -2<x<1 \\ -2 x+5 & \text { if } & 1 \leq x\end{array} \quad\right.$ b. $y=\left\{\begin{array}{lll}\sqrt{-x}+2 & \text { if } & x<0 \\ 2 & \text { if } & 0 \leq x<1 \\ 2 x & \text { if } & 1 \leq x\end{array}\right.$
23. Write the equation of each of these functions or relations:

24. Write an equation of a line through points $(2,3)$ and $(5,1)$. Give the answer in either general or slope-intercept form There will be a factorization problem like one of these from Chapter 3:
25. Completely factor each of these polynomials:
a. $f(x)=2 x^{3}+13 x^{2}+17 x-12$ given that $(x+4)$ is a factor
b. $f(x)=3 x^{3}+4 x^{2}-17 x-6$ given that 2 is a zero.

